Article
Licensed
Unlicensed
Requires Authentication
Contents
Published/Copyright:
August 27, 2019
Published Online: 2019-08-27
Published in Print: 2019-09-16
© 2019, Carl Hanser Verlag, München
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2018
- Technical Contributions/Fachbeiträge
- Development of CASMO5 for VVER-1000/1200 analysis and preliminary validation using critical experiments
- C-PORCA 7: a nodal diffusion reactor calculation code to support off-line and on-line core analysis at Paks nuclear power plant
- Adaptation of the gas gap simplified model in DYN3D code to new types of fuel
- A procedure for verification of Studsvik's spent nuclear fuel code SNF
- Extension of nodal diffusion solver of Ants to hexagonal geometry
- VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6
- Fuel cycles with PK-3+ FAs for VVER-440 reactors
- Prospects for implementation of VVER nuclear fuel enriched above 5%
- Core loading optimisation in Slovak VVER-440 reactors
- Statistical evaluation of C-15 cycles in Paks NPP, based on measured in-core data
- Optimized 18-months low-leakage core loadings for uprated VVER-1000
- Leningrad NPP-2 start-up loss of power test and its simulation with use of KORSAR/GP code
- Assessment of the fuel assembly pin-by-pin model in the KORSAR/GP code
- Comparative thermohydraulic analyses of VVER 1000 active core for two different construction types of assemblies
- Analysis of uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320
- Applied study on optimizing the final disposal of Loviisa NPP spent fuel assemblies
- Criticality safety analysis for GNS IQ® – The Integrated Quiver System for damaged fuel
- Neutron balance in two-component nuclear energy system
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2018
- Technical Contributions/Fachbeiträge
- Development of CASMO5 for VVER-1000/1200 analysis and preliminary validation using critical experiments
- C-PORCA 7: a nodal diffusion reactor calculation code to support off-line and on-line core analysis at Paks nuclear power plant
- Adaptation of the gas gap simplified model in DYN3D code to new types of fuel
- A procedure for verification of Studsvik's spent nuclear fuel code SNF
- Extension of nodal diffusion solver of Ants to hexagonal geometry
- VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6
- Fuel cycles with PK-3+ FAs for VVER-440 reactors
- Prospects for implementation of VVER nuclear fuel enriched above 5%
- Core loading optimisation in Slovak VVER-440 reactors
- Statistical evaluation of C-15 cycles in Paks NPP, based on measured in-core data
- Optimized 18-months low-leakage core loadings for uprated VVER-1000
- Leningrad NPP-2 start-up loss of power test and its simulation with use of KORSAR/GP code
- Assessment of the fuel assembly pin-by-pin model in the KORSAR/GP code
- Comparative thermohydraulic analyses of VVER 1000 active core for two different construction types of assemblies
- Analysis of uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320
- Applied study on optimizing the final disposal of Loviisa NPP spent fuel assemblies
- Criticality safety analysis for GNS IQ® – The Integrated Quiver System for damaged fuel
- Neutron balance in two-component nuclear energy system