Startseite Technik SIMULATE5-HEX extension for VVER analyses
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

SIMULATE5-HEX extension for VVER analyses

  • T. Bahadir
Veröffentlicht/Copyright: 31. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Studsvik's 3D, steady-state, nodal code SIMULATE5, which is widely used for square lattice geometries, has been recently extended to hexagonal geometry for the analysis of VVER 1000 and VVER 1200s. The lattice physics code CASMO5 is used for generating nodal cross sections data from single assembly calculations. SIMULATE5's HEX extension solves the multi-group diffusion equation, or optionally SP3 equations, for the hexagonal-z geometry by dividing each hexagonal into six triangles. In each triangle, the Fourier solution of the wave equation is approximated by eight plane waves to describe the intra-nodal flux accurately. The cross sections are described by a hybrid microscopic-macroscopic model that includes approximately 60 heavy nuclides and fission products. Heterogeneities, due to spacer/grid and control rod, in the axial direction of an assembly are treated systematically. This paper summarizes the physics models employed in SIMULATE5-HEX as well as the initial benchmarking activities.

Kurzfassung

Der stationäre 3D Nodalcode SIMULATE5 von Studsvik, der weltweit zur Berechnung von quadratischen Gittergeometrien verwendet wird, wurde für die Analyse von VVER 1000 und VVER 1200 s auf hexagonale Geometrien erweitert. Das Programm CASMO5 zur Berechnung der Physik des Gitters wird zur Erzeugung von Knotenquerschnittsdaten aus einzelnen Baugruppenberechnungen verwendet. Die HEX-Erweiterung von SIMULATE5 löst die Multi-Gruppen-Diffusionsgleichung oder optional SP3-Gleichungen für die Hexagonal-Z-Geometrie, indem sie jedes Hexagonal in sechs Dreiecke unterteilt. In jedem Dreieck wird die Fourier-Lösung der Wellengleichung durch acht ebene Wellen approximiert, um den intra-nodalen Fluss genau zu beschreiben. Die Querschnitte werden durch ein hybrides mikroskopisch-makroskopisches Modell beschrieben, das etwa 60 schwere Nuklide und Spaltprodukte enthält. Heterogenitäten durch Abstandhalter/Gitter und Steuerstab in axialer Richtung einer Baugruppe werden systematisch behandelt. Dieses Papier fasst die in SIMULATE5-HEX verwendeten physikalischen Modelle sowie die ersten Benchmark-Aktivitäten zusammen.


* E-mail:

References

1 Rhodes, J. D.; Smith, K. S.; Lee, D.: CASMO5 Development and Applications. PHYSOR 2006, Vancouver, Canada, (2006)Suche in Google Scholar

2 Bahadir, T.; Lindahl, S.-í.; PalmtagS.: SIMULATE5 Multi-Group Nodal Code with Microscopic Depletion Model. ANS Topical Meeting in Mathematics and Computation (M&C 2005), Avignon, France (2005)Suche in Google Scholar

3 Haugh, B.: Generic Application of the Studsvik Scandpower Core Management System to Pressurized Water Reactors. Tech. rep. SSP-14-P01/028-TR-NP-A, Revision 0. Studsvik Scandpower, Inc., Oct. 2017 URL: https://www.nrc.gov/docs/ML1727/ML17279A986.pdfSuche in Google Scholar

4 Knott, D.; Edenius, M.; Peltonen, J.; Anttila, M.: Results of Modelling Hexagonal and Circular Cluster Fuel Assembly Designs Using CASMO-4. Advances in Nuclear Fuel Management II, Myrtle Beach, S. Carolina, March 1997Suche in Google Scholar

5 Lindahl, S.-Ö.: SIMULATE-HEX – The Multi-Group Diffusion Equation in Hexagonal-Z Geometry. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun Valley, Idaho, May 2013Suche in Google Scholar

6 Weiss, Z.: A Consistent Definition of the Number Density of Pseudo-Isotopes. Ann. Nucl. Energy17 (1990) 15315610.1016/0306-4549(90)90093-SSuche in Google Scholar

7 Hagrman, D. T.; et al.: INTERPIN-4 User's Manual. Studsvik Scandpower Inc. Report SSP-07/435 (2007)Suche in Google Scholar

8 AER Benchmark Book (http://aerbench.kfki.hu/)Suche in Google Scholar

9 Lötsch, T.; Khalimonchuk, V.; KuchinA.: Proposal of a benchmark for core burnup calculations for a VVER-100 reactor core. Proceedings of the 19th Symposium of AER, September 21–25, 2009, Varna, BulgariaSuche in Google Scholar

10 Lötsch, T.Kliem, S.Bilodid, E.Khalimonchuk, V.Kuchin, A.Ovdienko, Yu. IeremenkoM., Blank, R.SchultzG.: The X2 benchmark for VVER-1000 reactor calculations: Overview and Current Status., Proceedings of the 26th Symposium of AER, October 10–14 2016, Helsinki, FinlandSuche in Google Scholar

Received: 2018-01-31
Published Online: 2018-08-31
Published in Print: 2018-08-27

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2017
  5. Technical Contributions/Fachbeiträge
  6. SIMULATE5-HEX extension for VVER analyses
  7. Application of discontinuity factors and group constants generated by SERPENT in the KIKO3 DMG code
  8. “Full-Core” VVER-440 extended calculation benchmark
  9. Calculation of “full core” VVER-1000 benchmark
  10. Study of neutron-physical characteristics of VVER-1200 considering feedbacks using MCU Monte Carlo code
  11. Advantages of VVER-440 fuel cycles with new fuel assemblies
  12. A neutronics feasibility study on utilization of a thinned cladding fuel design at Loviisa NPP
  13. Investigation of fuel cycles containing Generation IV reactors and VVER-1200 reactors
  14. Calculations of spent fuel isotopic composition for fuel rod from VVER-440 fuel assembly benchmark using several evaluated nuclear data libraries
  15. Simulation of standard temperature control indications at the outlet of a fuel assembly of VVER1000 reactor of Rostov NPP unit No. 2
  16. Power transient calculations with VERONA
  17. Physical startup tests calculations for Dukovany NPP using MOBY-DICK macrocode
  18. Renewing the refueling neutron monitoring and reactivity measurement systems at Paks NPP
  19. Hot channel calculation methodologies in case of VVER-1000/1200 reactors
  20. Contribution to the validation of the VVER-1000 Temelin NPP computing model for the ATHLET/DYN3D coupled codes
  21. Simulation of a hypothetical MSLB core transient in VVER-1000 with several stuck rods
Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110908/html
Button zum nach oben scrollen