Startseite Technik Simulation of a hypothetical MSLB core transient in VVER-1000 with several stuck rods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simulation of a hypothetical MSLB core transient in VVER-1000 with several stuck rods

  • S. Mitkov , I. Spasov und N. P. Kolev
Veröffentlicht/Copyright: 31. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A hypothetical main steam line break transient in a VVER-1000 core with multiple equipment faults was simulated with the coupled COBAYA4/CTF and COBAYA3/FLICA4 nodal core models. The objective was to test recent versions of the models developed in the EU NURISP and NURESAFE projects and to analyze the thermal-hydraulic conditions in the hot assembly at the pin-cell level. The accident scenario was specified as an aggravated variant of the OECD/NEA VVER-1000 MSLB benchmark with eight peripheral control rod clusters stuck out of the core after scram, all of them in the overcooled sector. Coarse-mesh models and a realistic cross-section library were used to compute the full-core behavior with pre-calculated MSLB boundary conditions and to identify the hot assembly. Then a sub-channel thermal-hydraulic analysis of the hot assembly was performed with the CTF code, using time-dependent assembly boundary conditions from the coarse-mesh vessel and core simulation. The results show that the predicted values of the safety parameters do not exceed the safety limits.

Kurzfassung

Mit den gekoppelten Knotenmodellen COBAYA4/CTF und COBAYA3/FLICA4 wurde ein hypothetischer Hauptdampfleitungsbruch in einem WWER-1000-Kern mit mehreren Gerätefehlern simuliert. Ziel war es, aktuelle Versionen der in den EU-Projekten NURISP und NURESAFE entwickelten Modelle zu testen und die thermohydraulischen Bedingungen im heißen Brennelement auf der Eben der Brennstoffzellen zu analysieren. Das Unfallszenario wurde als verschärfte Variante des OECD/NEA WWER-1000-MSLB-Benchmarks spezifiziert, wobei acht periphere Steuerstabcluster nach dem Scram aus dem Kern herausragen, alle im unterkühlten Bereich. Grobmaschige Modelle und eine realistische Querschnittsbibliothek wurden verwendet, um das Vollkernverhalten mit vorberechneten MSLB-Randbedingungen zu berechnen und die heiße Baugruppe zu identifizieren. Anschließend wurde mit dem CTF-Code eine thermohydraulische Unterkanalanalyse der heißen Baugruppe unter Verwendung zeitabhängiger Baugruppen-Randbedingungen aus der Grobmaschen- und Kernsimulation durchgeführt. Die Ergebnisse zeigen, dass die berechneten Werte der Sicherheitsparameter die Sicherheitsgrenzen nicht überschreiten.


* E-mail:

References

1 Chanaron, B.; Ahnert, C.; Bestion, D.; Zimmermann, M.; Crouzet, N.: The European Project NURISP for Nuclear Reactor Simulation. Proc. 2010 Annual Meeting of the American Nuclear Society, San Diego, CA, 13–17 June, 2010Suche in Google Scholar

2 Chanaron, B.: Overview of the NURESAFE European Project. Nuclear Engineering and Design321 (2017) 1710.1016/j.nucengdes.201709.001Suche in Google Scholar

3 COBAYAteam: COBAYA4 user's guide. UPM Report, Madrid, 2015Suche in Google Scholar

4 Ahnert, C.: Capacities and achievements of the COBAYA4 code after the NURESAFE project. NURESAFE Open General Seminar, Brussels, November 4–5, 2015Suche in Google Scholar

5 Avramova, M.; Salko, R.; et al.: COBRA-TF (CTF) 2013 User's Guide. Pennsylvania State University, PA, Nov 2013Suche in Google Scholar

6 Salko, R. K.; Avramova, M.: COBRA-TF Sub-channel Thermal Hydraulic Code (CTF) Theory Manual. CASL-U-2016-1110-000, Pennsylvania State University, May 25 201610.2172/1340446Suche in Google Scholar

7 Toumi, I.; Bergeron, A.; Gallo, D.; Royer, E.; Caruge, D.: FLICA-4: a three-dimensional two-phase flow computer code with advanced numerical methods for nuclear application. Nucl. Eng. Des.200 (2000) 13915510.1016/S0029-5493(99)00332-5Suche in Google Scholar

8 Fillion, Ph.; Bergeron, A.; Gallo, D.; Gregoire, O.; Richebois, E.; Royer, E.; Zimmer, S.: FLICA4 Users Guide. CEA Saclay, 2011Suche in Google Scholar

9 Spasov, I.; Mitkov, S.; Kolev, N.: Sub-channel FLICA4 and COBRA-TF input models qualified for VVER. NURESAFE D14.23 Report, 14 June 2014Suche in Google Scholar

10 Kolev, N. P.; et al.: VVER-1000 Coolant transient benchmark Phase II (V1000CT-2). Vol.2: Final Specifications of the VVER-1000 MSLB problem. NEA/NSC/DOC 2006(6) OECD 2010Suche in Google Scholar

11 Kolev, N. P.; Spasov, I.; Tzanov, Tz.; Royer, E.: VVER-1000 Coolant Transient Benchmark: Phase 2 (V1000CT-2) Volume 4: Summary results of coupled 3D kinetics/core-vessel thermal hydraulics and core-plant MSLB simulation. NEA/NSC/DOC (2011)3, Paris OECD 2011Suche in Google Scholar

12 Spasov, I.; Mitkov, S.; Kolev, N. P.; Sanchez-Cervera, S.; Garcia-Herranz, N.; Sabater, A.; Cuervo, D.; Jimenez, J.; Sanchez, V. H.; Vyskocil, L.: Best-estimate simulation of a VVER MSLB core transient using the NURESIM platform codes. Nucl. Eng. and Design321 (2017) 263710.1016/j.nucengdes.2017.03.032Suche in Google Scholar

13 Kolev, N.; Petrov, N.; Royer, E.; Ivanov, B.; Ivanov, K.: Comparative analysis of Exercise 2 results of the OECD VVER-1000 MSLB benchmark. Proc. 16th Symposium of AER, Bratislava, Slovak Republic, September 25–28, 2006. INIS RN: 38071937Suche in Google Scholar

14 Petkevich, I. G.; Alehin, G. B.: Calculation results of the international VVER-1000 MSLB benchmark V1000CT-2 with the code package KORSAR/GP. Proc. Int. conference on reactor safety, Gidropress, Podolsk, Russia, 2011 (in Russian)Suche in Google Scholar

15 Uvakin, M. A.; Alehin, G. B.; Bykov, M. A.; Zaitzev, S. I.: Verification of the 3D neutron kinetics model in the TRAP-KS code in reactivity insertion benchmarks. VANT, Reactor physics series, issue3 (2015), Podolsk, M.O. ISSN 0205-4671 http://www.gidropress.podolsk.ru/files/vant/VANT_3_2015_physics.pdfSuche in Google Scholar

16 Seppälä, M.: HEXTRAN-SMABRE Calculation of the VVER-1000 Transient Benchmark, Phase 2: Main Steam Line Break. VTT-R-08573-07 Report, 2007 https://www.vtt.fi/inf/julkaisut/muut/…/VTT-R-08573-07.pdfSuche in Google Scholar

17 Kolev, N. P.; Spasov, I.; Zheleva, N.; Todorova, G.; Petrov, N.; Ivanov, P.; Mitkov, S.; Kamenscic, O.; Hadek, J.; Vyskocil, L.; Jimenez, J.; Sanchez, V. H.; Sanchez-Cervera, S.; Garcia-Herranz, N.; Sabater, A.; Cuervo, D.: Higher-resolution VVER MSLB simulation – Final Report. NURESAFE D14.41 report, Feb 2016Suche in Google Scholar

18 Spasov, I.; Kolev, N. P.; Donov, J.; Sabotinov, L.: CATHARE Multi-1D Modeling of Coolant Mixing in VVER-1000 for RIA Analysis. Science and Technology of Nuclear Installations2010 (2010) Article ID 457094, Hindawi, New York (2010) open access j 10.1155/2010/457094Suche in Google Scholar

19 Petrov, N.; Spasov, I.; Kolev, N. P.; Sanchez-Cervera, S.; Garcia-Herranz, N.: Nodal level XS library v2 for VVER parameterized for MSLB. NURESAFE D14.25-Rev2 report, Jan 2015Suche in Google Scholar

20 Chanaron, B.; Ahnert, C.; Crouzet, N.; Sanchez, V.; Kolev., N.; et al.: Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project. Annals of Nuclear Energy84 (2015) 166177, 10.1016/j.anucene.2014.12.013Suche in Google Scholar

21 Kothe, D. B.: CASL: The Consortium for Advanced Simulation of Light Water Reactors – A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors. Oak Ridge National Laboratory, 2016Suche in Google Scholar

22 Jimenez, J.; Sanchez, V.: Full-core COBRA-TF input model for VVER MSLB analysis. NURESAFE D14.22b Report, June 2013Suche in Google Scholar

23 SpasovI.; KolevN. P.: Full-core FLICA4 input model for VVER MSLB analysis. NURESAFE D14.22a Report, March 2013Suche in Google Scholar

24 García-Herranz, N.; Cuervo, D.; Sabater, A.; Rucabado, G.; Sánchez-Cervera, S.; Castro, E.: Multi-scale neutronics/thermal-hydraulics coupling with COBAYA4 code for pin-by-pin PWR transient analysis. Nuclear Engineering and Design321 (2017) 384710.1016/j.nucengdes.2017.03.017Suche in Google Scholar

25 Salome 6: http://www.salome-platform.org/Suche in Google Scholar

26 Jimenez, J.: COBAYA/FLICA4 coupling in Salome 5. NURISP Technical note, UPM, 2009Suche in Google Scholar

27 Sanchez, R.: APOLLO2 Year 2010. Nuclear Engineering and Technology42 (2010) 47449910.5516/NET.2010.42.5.474Suche in Google Scholar

28 Sánchez-Cervera, S.; García-Herranz, N.; Herrero, J. J.; Cabellos, O.: Optimization of multi-dimensional cross section tables for few group core calculations. Annals of Nuclear Energy69 (2014) 22623710.1016/j.anucene.2014.02.013Suche in Google Scholar

29 Kolev, N. P.; Spasov, I.; Todorova, G.: VVER MSLB Specification: Vessel mixing tests and N/TH simulation at the nodal level. NURESAFE D14.11.1 report, 2014Suche in Google Scholar

30 Tong, L. S: Prediction of Departure from Nucleate Boiling for an Axially Non-Uniform Heat Flux Distribution. Journal of Nuclear Energy21 (1967) 24124810.1016/S0022-3107(67)90054-8Suche in Google Scholar

31 Tong, L. S.; Tang, Y. S.: Boiling Heat Transfer and Two-Phase Flow. 2nd ed., Taylor and Francis, 1997Suche in Google Scholar

32 Lizorkin, M.; et al.: Development of codes and the KASKAD complex. Kerntechnik80 (2015) 31432010.3139/124.110503Suche in Google Scholar

33 Sung, Y.; Kucukboyaci, V.; Cao, L.; Salko, R. K.: COBRA-TF evaluation and application for PWR steam line break DNB analysis. NURETH16–13431, Int. Topical Mtg on Nuclear Reactor Thermal Hydraulics, Chicago, IL, August 30-September 4, 2015Suche in Google Scholar

34 Shorder, W. J.; McHugh, C.J.: Reactor core response to excessive secondary steam releases, WCAP-9227-P-A, Rev. 1, Westinghouse Electric Company, 1998Suche in Google Scholar

35 Brown, C. S.; Zhang, H.; Kucukboyaci, V.; Sung, Y.: BEPU Analysis of DNB Limiting Case with CASL Core Simulator VERA-CS in Response to PWR MSLB Event. Nuclear Engineering and Design309 (2016) 82210.1016/j.nucengdes.2016.09.006Suche in Google Scholar

36 Biasi, L.; et al.: Studies on Burnout, Part 3. Energia Nucleare14 (1967) 530536Suche in Google Scholar

37 Ozulus, O. A.; Ergun, S.: Analysis of COBRA-TF Critical Heat Flux Models for Triangular Fuel Assembly Pitch. Transactions of the American Nuclear Society, Vol. 116, San Francisco, California, June 11–15, 2017Suche in Google Scholar

Received: 2018-01-31
Published Online: 2018-08-31
Published in Print: 2018-08-27

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2017
  5. Technical Contributions/Fachbeiträge
  6. SIMULATE5-HEX extension for VVER analyses
  7. Application of discontinuity factors and group constants generated by SERPENT in the KIKO3 DMG code
  8. “Full-Core” VVER-440 extended calculation benchmark
  9. Calculation of “full core” VVER-1000 benchmark
  10. Study of neutron-physical characteristics of VVER-1200 considering feedbacks using MCU Monte Carlo code
  11. Advantages of VVER-440 fuel cycles with new fuel assemblies
  12. A neutronics feasibility study on utilization of a thinned cladding fuel design at Loviisa NPP
  13. Investigation of fuel cycles containing Generation IV reactors and VVER-1200 reactors
  14. Calculations of spent fuel isotopic composition for fuel rod from VVER-440 fuel assembly benchmark using several evaluated nuclear data libraries
  15. Simulation of standard temperature control indications at the outlet of a fuel assembly of VVER1000 reactor of Rostov NPP unit No. 2
  16. Power transient calculations with VERONA
  17. Physical startup tests calculations for Dukovany NPP using MOBY-DICK macrocode
  18. Renewing the refueling neutron monitoring and reactivity measurement systems at Paks NPP
  19. Hot channel calculation methodologies in case of VVER-1000/1200 reactors
  20. Contribution to the validation of the VVER-1000 Temelin NPP computing model for the ATHLET/DYN3D coupled codes
  21. Simulation of a hypothetical MSLB core transient in VVER-1000 with several stuck rods
Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110910/html
Button zum nach oben scrollen