Home Technology Renewing the refueling neutron monitoring and reactivity measurement systems at Paks NPP
Article
Licensed
Unlicensed Requires Authentication

Renewing the refueling neutron monitoring and reactivity measurement systems at Paks NPP

  • S. Kiss , S. Lipcsei , G. Házi , Z. Dezső , T. Parkó , I. Pós , M. Ignits and L. Hományi
Published/Copyright: August 31, 2018
Become an author with De Gruyter Brill

Abstract

The Refueling Neutron Monitoring System and the Reactivity Monitoring System for startup measurements are both aged, the development of a new combined system fulfilling both functionalities has therefore been started. The new system is based on 6 autonomous measurement chains covering the whole neutron flux range and uses fixed fission chambers. The signals of the measurement chains are received by two redundant processing systems continuously providing measured and calculated data for external systems like the VERONA core monitoring system. The system generates emergency signals and events for the operators of the Main Control Room and the Refueling Machine. The pilot measurement chain has been tested at Units 2 and 3 of Paks NPP. The first implementation of the new system is planned to be installed at Unit 3 by the middle of the following year.

Kurzfassung

Die zwei Anfahrmesssysteme zur Neutronenüberwachungs beim Wiederbefüllen mit Brennelementen sowie zur Reaktivitätsüberwachungs sind beide veraltet, die Entwicklung eines neuen kombinierten Systems, das beide Funktionen erfüllt, wurde daher begonnen. Das neue System basiert auf 6 autonomen Messketten, die den gesamten Neutronenflussbereich abdecken und verwendet feste Spaltkammern. Die Signale der Messketten werden von zwei redundanten Verarbeitungssystemen empfangen, die kontinuierlich gemessene und berechnete Daten für externe Systeme wie das VERONA-Core-Monitoringsystem liefern. Das System generiert Notsignale und Ereignisse für die Bediener der Hauptschaltwarte und der Befüllungsmaschine. Die Pilot-Messkette wurde an den Blöcken 2 und 3 des KKW-Paks getestet. Die erste Implementierung des neuen Systems soll bis Mitte des folgenden Jahres im Block 3 installiert werden.


* E-mail:

References

1 Czibók, T.; Dezső, Z.; Horváth, Cs.; Lipcsei, S.; Végh, J.; Pós, I.: A modernized and versatile startup reactivity measuring system installed at NPP Paks and its application for subcritical systems. Nucl. Eng. Des.236 (2006) 235610.1016/j.nucengdes.2006.01.012Search in Google Scholar

2 Végh, J.; Pós, I.; Major, Cs.; Kálya, Z.; Horváth, Cs.; Parkó, T.; Ignits, M.: Core analysis at Paks NPP with a new generation of VERONA. Nucl. Eng. Des.238 (2008) 131610.1016/j.nucengdes.2007.10.013Search in Google Scholar

3 Végh, J.; KissS.; Lipcsei, S.; Horváth, Cs.; Pós, I.; Kiss, G.: Implementation of New Reactivity Measurement System and New Reactor Noise Analysis Equipment in a VVER-440 Nuclear Power Plant. IEEE Trans. Nucl. Sci.57(5) (2010) 268910.1109/TNS.2010.2053384Search in Google Scholar

4 Pós, I.; Kálya, Z.; Parkó, T.; Patai-Szabó, S.: New models in VERONA 7.0 system. Kerntechnik81 (2016) 4; 380–386 10.3139/124.110704Search in Google Scholar

Received: 2018-01-30
Published Online: 2018-08-31
Published in Print: 2018-08-27

© 2018, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2017
  5. Technical Contributions/Fachbeiträge
  6. SIMULATE5-HEX extension for VVER analyses
  7. Application of discontinuity factors and group constants generated by SERPENT in the KIKO3 DMG code
  8. “Full-Core” VVER-440 extended calculation benchmark
  9. Calculation of “full core” VVER-1000 benchmark
  10. Study of neutron-physical characteristics of VVER-1200 considering feedbacks using MCU Monte Carlo code
  11. Advantages of VVER-440 fuel cycles with new fuel assemblies
  12. A neutronics feasibility study on utilization of a thinned cladding fuel design at Loviisa NPP
  13. Investigation of fuel cycles containing Generation IV reactors and VVER-1200 reactors
  14. Calculations of spent fuel isotopic composition for fuel rod from VVER-440 fuel assembly benchmark using several evaluated nuclear data libraries
  15. Simulation of standard temperature control indications at the outlet of a fuel assembly of VVER1000 reactor of Rostov NPP unit No. 2
  16. Power transient calculations with VERONA
  17. Physical startup tests calculations for Dukovany NPP using MOBY-DICK macrocode
  18. Renewing the refueling neutron monitoring and reactivity measurement systems at Paks NPP
  19. Hot channel calculation methodologies in case of VVER-1000/1200 reactors
  20. Contribution to the validation of the VVER-1000 Temelin NPP computing model for the ATHLET/DYN3D coupled codes
  21. Simulation of a hypothetical MSLB core transient in VVER-1000 with several stuck rods
Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110905/html
Scroll to top button