“Full-Core” VVER-440 extended calculation benchmark
-
J. Vimpel
, V. Krýsl , P. Mikoláš , D. Sprinzl , J. Švarný , J. Závorka , I. Panka , I. Pós , R. Vočka , A. I. Shcherenko and K. Y. Kurakin
Abstract
This work deals with “Full-Core” VVER-440 extended calculation benchmark which was proposed on the 24th Symposium of AER in October 2014 [2]. This benchmark is based on calculation benchmark defined by ŠKODA JS a.s. on the 21st Symposium of AER in 2011 [1]. This benchmark differs from the first “Full-Core” VVER-440 benchmark in use of control rods from group No. 6. Reason why these benchmarks exist is problematic validation of power distribution predicted by macro-code on the pin by pin level against experimental data. This new benchmark is also a 2D calculation benchmark based on the VVER-440 reactor core cold state geometry with taking into account the geometry of explicit radial reflector. Loading pattern for this core is very similar to the first pattern of the Mochovce NPP. This core is filled with fuel assemblies with enrichment of 1.6%w 235U, 2.4%w 235U and 4.25%w 235U. The main task of this benchmark is to test the pin by pin power distribution in fuel assemblies predicted by macro-codes that are used for neutron-physics calculations especially for VVER reactors. The reference solution has been calculated by MCNP6 code using Monte Carlo method and the results have been published in the AER community. The results of reference calculation were presented on the 27th Symposium of AER in 2017 [3]. In this paper is presented comparison of available macro-codes results for this calculation benchmark.
Kurzfassung
Diese Arbeit beschäftigt sich mit dem erweiterten „Full-Core“-WWER-440-Berechnungsbenchmark, der auf dem 24. AER-Symposium im Oktober 2014 vorgeschlagen wurde. Dieser Benchmark basiert auf dem von ŠKODA JS a.s. im Jahr 2011 auf dem 21. AER-Symposium definierten Benchmark. Dieser Benchmark unterscheidet sich vom ersten „Full-Core“ WWER-440 Benchmark in der Verwendung von Steuerstäben der Gruppe 6. Grund für den erweiterten Benchmark ist die schwierige Validierung der Energieverteilung durch Makrocodes auf der Pin-für-Pin-Ebene gegen experimentelle Daten. In diesem neuen Benchmark wird eine 2D-Berechnung auf Basis des kalten Zustands der Reaktorkerngeometrie eines WWER-440 unter Berücksichtigung der Geometrie des expliziten Radialreflektors durchgeführt. Das Beladungsmuster für diesen Kern ist dem ersten Muster des KKW Mochovce sehr ähnlich. Dieser Kern ist mit Brennelementen mit einer Anreicherung von 1,6%w 235U, 2,4%w 235U und 4,25%w 235U befüllt. Die Hauptaufgabe dieses Benchmarks besteht darin, die mit Makro-Codes berechneten Pin-für-Pin-Leistungsverteilungen in Brennelementen zu validieren, die für neutronenphysikalische Berechnungen von WWER-Reaktoren verwendet werden. Die Referenzlösung wurde mittels MCNP6-Code nach der Monte-Carlo-Methode berechnet und die Ergebnisse wurden in der AER-Community veröffentlicht. Die Ergebnisse der Referenzberechnung wurden auf dem 27. AER-Symposium in 2017 vorgestellt. In diesem Beitrag wird ein Vergleich der verfügbaren Makrocode-Ergebnisse präsentiert.
References
1 Krýsl, V.; Mikoláš, P.; Sprinzl, D.; Švarný, J.: “FullCore” VVER-440 Pin Power Distribution Calculation Benchmark. Proceedings of the twenty-first Symposium of AER, Dresden, Germany, September 19–23, 2011Search in Google Scholar
2 Krýsl, V.; Mikoláš, P.; Sprinzl, D.; Švarný, J.: “FullCore” VVER-440 Benchmark Extension. Proceedings of the twenty-fourth Symposium of AER, Sochi, Russia, October 14–18, 2014.Search in Google Scholar
3 Krýsl, V.; Mikoláš, P.; Sprinzl, D.; Vimpel, J.; Závorka, J.: “FullCore” VVER-440 Benchmark Extension. Proceedings of the twenty-seventh Symposium of AER, Munchen, Germany, October 17–20, 2017.Search in Google Scholar
4 Mikoláš, P.: data.zip, e-mail attachment, 12.6.2017.Search in Google Scholar
5 Vočka, R.: data.zip, e-mail attachment, 16.9.2016.Search in Google Scholar
6 Pós, I.: data.zip, e-mail attachment, 15.9.2016.10.5585/cpg.v15n0.6871Search in Google Scholar
7 Panka, I.: data.zip, e-mail attachment, 2.9.2016.Search in Google Scholar
8 Krýsl, V.; Mikoláš, P.; Sprinzl, D.; Vimpel, J.; Závorka, J.: “FullCore” VVER-440 Benchmark. ČMSSRF, Olomouc, Czech Republic, May 3–5, 2017Search in Google Scholar
9 Scherenko, A.: data.zip, e-mail attachment, 23.9.2016Search in Google Scholar
10 Kurakin, K.: data.zip, e-mail attachment, 11.12.2018Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2017
- Technical Contributions/Fachbeiträge
- SIMULATE5-HEX extension for VVER analyses
- Application of discontinuity factors and group constants generated by SERPENT in the KIKO3 DMG code
- “Full-Core” VVER-440 extended calculation benchmark
- Calculation of “full core” VVER-1000 benchmark
- Study of neutron-physical characteristics of VVER-1200 considering feedbacks using MCU Monte Carlo code
- Advantages of VVER-440 fuel cycles with new fuel assemblies
- A neutronics feasibility study on utilization of a thinned cladding fuel design at Loviisa NPP
- Investigation of fuel cycles containing Generation IV reactors and VVER-1200 reactors
- Calculations of spent fuel isotopic composition for fuel rod from VVER-440 fuel assembly benchmark using several evaluated nuclear data libraries
- Simulation of standard temperature control indications at the outlet of a fuel assembly of VVER1000 reactor of Rostov NPP unit No. 2
- Power transient calculations with VERONA
- Physical startup tests calculations for Dukovany NPP using MOBY-DICK macrocode
- Renewing the refueling neutron monitoring and reactivity measurement systems at Paks NPP
- Hot channel calculation methodologies in case of VVER-1000/1200 reactors
- Contribution to the validation of the VVER-1000 Temelin NPP computing model for the ATHLET/DYN3D coupled codes
- Simulation of a hypothetical MSLB core transient in VVER-1000 with several stuck rods
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2017
- Technical Contributions/Fachbeiträge
- SIMULATE5-HEX extension for VVER analyses
- Application of discontinuity factors and group constants generated by SERPENT in the KIKO3 DMG code
- “Full-Core” VVER-440 extended calculation benchmark
- Calculation of “full core” VVER-1000 benchmark
- Study of neutron-physical characteristics of VVER-1200 considering feedbacks using MCU Monte Carlo code
- Advantages of VVER-440 fuel cycles with new fuel assemblies
- A neutronics feasibility study on utilization of a thinned cladding fuel design at Loviisa NPP
- Investigation of fuel cycles containing Generation IV reactors and VVER-1200 reactors
- Calculations of spent fuel isotopic composition for fuel rod from VVER-440 fuel assembly benchmark using several evaluated nuclear data libraries
- Simulation of standard temperature control indications at the outlet of a fuel assembly of VVER1000 reactor of Rostov NPP unit No. 2
- Power transient calculations with VERONA
- Physical startup tests calculations for Dukovany NPP using MOBY-DICK macrocode
- Renewing the refueling neutron monitoring and reactivity measurement systems at Paks NPP
- Hot channel calculation methodologies in case of VVER-1000/1200 reactors
- Contribution to the validation of the VVER-1000 Temelin NPP computing model for the ATHLET/DYN3D coupled codes
- Simulation of a hypothetical MSLB core transient in VVER-1000 with several stuck rods