Startseite Technik Physical startup tests calculations for Dukovany NPP using MOBY-DICK macrocode
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Physical startup tests calculations for Dukovany NPP using MOBY-DICK macrocode

  • M. Růčka und M. Šašek
Veröffentlicht/Copyright: 31. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Physical startup tests are an important part of the operation of each nuclear reactor fuel cycle. This paper is focused on calculations of these tests for Dukovany NPP using MOBY-DICK diffusion macrocode. In this paper two tests are presented, specifically SCRAM test and “Weight of the 6th group of control assemblies” test. Both tests are described, methodology of calculation is introduced and results of calculations are compared with experimental data.

Kurzfassung

Physikalische Inbetriebnahmetests sind ein wichtiger Bestandteil des Betriebs jedes Kernreaktor-Brennstoffkreislaufs. Dieses Papier beschreibt Berechnungen dieser Tests für das Kernkraftwerk Dukovany unter Verwendung des MOBY-DICK-Diffusionsmakrocodes. In diesem Beitrag werden zwei Tests vorgestellt: der SCRAM-Test und der Test „Gewicht der sechsten Gruppe der Steuerstäben“. Beide Tests werden beschrieben, die Berechnungsmethodik vorgestellt und die Ergebnisse der Berechnungen mit experimentellen Daten verglichen.


* E-mail:

References

1 Bajgl, J.; Krýsl, V.; Švarný, J: An analysis of reactivity prediction during reactor start-up process. Kerntechnik80 (2015) 33934810.3139/124.110507Suche in Google Scholar

2 Bikeev, A. S.; etal.: Calculations of VVER-1000 start-up physics tests using MCU Monte Carlo code, 26th Symposium of AER, Helsinki, October, FinlandSuche in Google Scholar

3 Bahadir, T.; Giffen, M. M.; Wells, C.: Fixed-Source and Ex-Core calculations with SIMULATE5. M&C – International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Jeju, Korea, April, 2017Suche in Google Scholar

4 Krýsl, V.; Mikoláš, P.; et al.: MOBY-DICK macrocode. ŠKODA JS a.s., Plzeň, 2017Suche in Google Scholar

5 DOORS 3.2a: Program Package for One, Two and Three Dimensional Discrete Ordinates Transport. CCC-650, RSICC, ORNL, Oak Ridge, Tennessee, May 2007Suche in Google Scholar

6 Bárta, M.: Dukovany NPP, ČEZ a.s., personal communicationSuche in Google Scholar

7 Tuttle, R. J.: Delayed-Neutron Data for Reactor-Physics Analysis. Nuclear Science and Engineering56 (1975) 377110.13182/NSE75-A26620Suche in Google Scholar

8 Švarný, J.; Krýsl, V.; Mikoláš, P.; Vlachovský, K.: Calculation of Point-Kinetics Parameters in the MOBY-DICK System. Nuclear Science and Engineering128 (1998) 768710.13182/NSE98-A1947Suche in Google Scholar

Received: 2018-01-31
Published Online: 2018-08-31
Published in Print: 2018-08-27

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2017
  5. Technical Contributions/Fachbeiträge
  6. SIMULATE5-HEX extension for VVER analyses
  7. Application of discontinuity factors and group constants generated by SERPENT in the KIKO3 DMG code
  8. “Full-Core” VVER-440 extended calculation benchmark
  9. Calculation of “full core” VVER-1000 benchmark
  10. Study of neutron-physical characteristics of VVER-1200 considering feedbacks using MCU Monte Carlo code
  11. Advantages of VVER-440 fuel cycles with new fuel assemblies
  12. A neutronics feasibility study on utilization of a thinned cladding fuel design at Loviisa NPP
  13. Investigation of fuel cycles containing Generation IV reactors and VVER-1200 reactors
  14. Calculations of spent fuel isotopic composition for fuel rod from VVER-440 fuel assembly benchmark using several evaluated nuclear data libraries
  15. Simulation of standard temperature control indications at the outlet of a fuel assembly of VVER1000 reactor of Rostov NPP unit No. 2
  16. Power transient calculations with VERONA
  17. Physical startup tests calculations for Dukovany NPP using MOBY-DICK macrocode
  18. Renewing the refueling neutron monitoring and reactivity measurement systems at Paks NPP
  19. Hot channel calculation methodologies in case of VVER-1000/1200 reactors
  20. Contribution to the validation of the VVER-1000 Temelin NPP computing model for the ATHLET/DYN3D coupled codes
  21. Simulation of a hypothetical MSLB core transient in VVER-1000 with several stuck rods
Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110912/html
Button zum nach oben scrollen