Startseite Technik Investigation of fuel cycles containing Generation IV reactors and VVER-1200 reactors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of fuel cycles containing Generation IV reactors and VVER-1200 reactors

  • M. Halász und M. Szieberth
Veröffentlicht/Copyright: 31. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Gen-IV fast reactors are envisaged to operate in closed fuel cycles due to their ability to breed their fuel from fertile feed and burn minor actinides produced by themselves or thermal reactors in the nuclear park. The optimization of such fuel cycle strategies requires detailed models, capable of simulating the transition from initial state to equilibrium. A fast and flexible burn-up scheme based on polynomial fitting of the one-group cross-sections, FITXS was used to develop burn-up models for the Gen-IV Gas-cooled Fast Reactor (GFR), Lead-cooled Fast Reactor (LFR) and Sodium-cooled Fast Reactor (SFR), as well as a European Pressurized Reactor (EPR) and a VVER-1200 MOX fuel assembly. The burn-up models were integrated in a closed fuel cycle model containing Gen-IV LFR and MOX fueled VVER-1200 reactors, and different scenarios were investigated and compared concerning the reduction of transuranium inventories and the stabilization of the plutonium inventory. Results show that the LFR is capable of burning minor actinides from spent VVER-440 fuel and that transuranium inventories can be stabilized or reduced with a mixed fleet of LFR and MOX fueled VVER-1200 reactors.

Kurzfassung

Schnelle Reaktoren der Generation IV sind für den Betrieb mit geschlossenen Brennstoffkreisläufen vorgesehen, da sie in der Lage sind, ihren Brennstoff selbst zu erbrüten und selbst oder durch andere thermische Reaktoren produzierte minore Aktinide zu verbrennen. Die Optimierung solcher Brennstoffkreislaufstrategien erfordert detaillierte Berechnungsmodelle, die den Übergang vom Ausgangszustand zum Gleichgewicht simulieren können. FITXS ist ein schnelles und flexibles Berechnungsverfahren zur Bestimmung des Abbrands, das auf der polynomialen Anpassung der Ein-Gruppen-Querschnitte basiert. Mit FITXS wurden Abbrandmodelle für den gasgekühlten Gen-IV Fast Reactor (GFR), den bleigekühlten Fast Reactor (LFR) und den natriumgekühlten Fast Reactor (SFR) sowie einen European Pressurized Reactor (EPR) und ein WWER-1200 MOX-Brennelement entwickelt. Die Abbrandmodelle wurden in geschlossene Brennstoffkreislaufmodelle mit Gen-IV LFR- und MOX-betriebenen WWER-1200-Reaktoren integriert und verschiedene Szenarien hinsichtlich der Reduktion von Transuran-Beständen und der Stabilisierung des Plutonium-Bestands untersucht und verglichen. Die Ergebnisse zeigen, dass der LFR in der Lage ist, kleinere Aktinide aus verbrauchtem VVER-440 Brennstoff zu verbrennen und dass Transuranbestände mit einer gemischten Flotte von mit LFR und MOX betriebenen VVER-1200 Reaktoren stabilisiert oder reduziert werden können.


* E-mail:

References

1 US DoE: A technology roadmap for Generation IV nuclear energy systems. Nuclear Energy Research Advisory Committee and the Gen-IV International Forum. 2002Suche in Google Scholar

2 Salvatores, M.; Palmiotti, G.: Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Progress in Particle and Nuclear Physics66 (2011) 14416610.1016/j.ppnp.2010.10.001Suche in Google Scholar

3 Halász, M.; Szieberth, M.; Fehér, S.: FITXS: A fast and flexible burn-up scheme based on the fitting of one-group cross-sections. Annals of Nuclear Energy104 (2017) 26728110.1016/j.anucene.2017.02.010Suche in Google Scholar

4 Perkó, Z.; Pelloni, S.; Mikityuk, K.; Krepel, J.; Szieberth, M.; Gaëtan, G.; Vrban, B.; Lüley, J.; Cerba, S.; Halász, M.; et al.: Core neutronics characterization of the GFR2400 Gas Cooled Fast Reactor. Progress in Nuclear Energy83 (2015) 46048110.1016/j.pnucene.2014.09.016Suche in Google Scholar

5 Alemberti, A.; et al.: European lead fast reactor – ELSY. Nuclear Engineering and Design241. 9 (2011) 3470348010.1016/j.nucengdes.2011.03.029Suche in Google Scholar

6 Blanchet, D.; Buiron, L.; Stauff, N.: Sodium Fast Reactor Core Definitions. No. NEA-WPRS-EGRPANS2011-09-19, SFR Benchmark Task Force, CEA Cadarache, 2011Suche in Google Scholar

7 Oak Ridge National Laboratory: SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation. ORNL/TM-2005/39 Version 6 Vols. I–III, US, 2009Suche in Google Scholar

8 Szieberth, M.; Halász, M.; Reiss, T.; Fehér, S.: Fuel cycle studies on minor actinide burning in gas cooled fast reactors. in: Proceedings of Fast Reactors and Related Fuel Cycles (FR13), Volume 2, Paris, France, 14–16 March 2013Suche in Google Scholar

9 Brolly, Á.; Halász, M.; Szieberth, M.; Nagy, L.; Fehér, S.: Physical model of the nuclear fuel cycle simulation code SITON. Annals of Nuclear Energy99 (2017) 47148310.1016/j.anucene.2016.10.001Suche in Google Scholar

10 Halász, M.; Brolly, Á.; Szieberth, M.; Fehér, S.: Fuel cycle studies of Generation IV reactors with the SITON v2.0 code and the FITXS burn-up scheme. in: Proceedings of Fast Reactors and Related Fuel Cycles (FR17), Yekaterinburg, Russian Federation, 24–27 June 2017Suche in Google Scholar

11 AREVA-NP,UK–EPR, Fundamental safety overview. Technical report, 2008Suche in Google Scholar

12 Dwiddar, M. S.; BadawiA. A.; et al.: From VVER-1000 to VVER-1200: Investigation of the effect of the changes in core. PHYTRA3, Tetouan, Marocco, 2014.05.12-14Suche in Google Scholar

13 Vasilchenko, I. N.; Mokhov, V. A.; Ryzhov, S. B.: Core designs for new VVER reactors and operation experience of immediate prototypes. in: Proceedings of 9th International Conference on WWER Fuel Performance, Modelling and Experimental Support, 17–24 September 2011, Helena Resort, Burgas PMid:21381206;Suche in Google Scholar

14 Coquelet-Pascal, C.; Tiphine, M.; Krivtchik, G.; Freynet, D.; Cany, C.; Eschbach, R.; Chabert, C.: COSI6: a tool for nuclear transition scenario studies and application to SFR deployment scenarios with minor actinide transmutation. in: Nuclear Technology192. 2 (2015) 9111010.13182/NT15-20Suche in Google Scholar

15 Meyer, M.; Coquelet-Pascal, C.; Girieud, R.; Tiphine, M.; Eschbach, R.; Chabert, C.; et al.: Scenarios for Minor Actinides Transmutation in the Frame of the French act for waste management. in: Proceedings of FR13 Conference, 4–7 March 2013, Paris, FranceSuche in Google Scholar

Received: 2018-01-30
Published Online: 2018-08-31
Published in Print: 2018-08-27

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2017
  5. Technical Contributions/Fachbeiträge
  6. SIMULATE5-HEX extension for VVER analyses
  7. Application of discontinuity factors and group constants generated by SERPENT in the KIKO3 DMG code
  8. “Full-Core” VVER-440 extended calculation benchmark
  9. Calculation of “full core” VVER-1000 benchmark
  10. Study of neutron-physical characteristics of VVER-1200 considering feedbacks using MCU Monte Carlo code
  11. Advantages of VVER-440 fuel cycles with new fuel assemblies
  12. A neutronics feasibility study on utilization of a thinned cladding fuel design at Loviisa NPP
  13. Investigation of fuel cycles containing Generation IV reactors and VVER-1200 reactors
  14. Calculations of spent fuel isotopic composition for fuel rod from VVER-440 fuel assembly benchmark using several evaluated nuclear data libraries
  15. Simulation of standard temperature control indications at the outlet of a fuel assembly of VVER1000 reactor of Rostov NPP unit No. 2
  16. Power transient calculations with VERONA
  17. Physical startup tests calculations for Dukovany NPP using MOBY-DICK macrocode
  18. Renewing the refueling neutron monitoring and reactivity measurement systems at Paks NPP
  19. Hot channel calculation methodologies in case of VVER-1000/1200 reactors
  20. Contribution to the validation of the VVER-1000 Temelin NPP computing model for the ATHLET/DYN3D coupled codes
  21. Simulation of a hypothetical MSLB core transient in VVER-1000 with several stuck rods
Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110906/html
Button zum nach oben scrollen