Startseite Application of discontinuity factors and group constants generated by SERPENT in the KIKO3 DMG code
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of discontinuity factors and group constants generated by SERPENT in the KIKO3 DMG code

  • I. Pataki , B. Batki , A. Keresztúri und I. Panka
Veröffentlicht/Copyright: 31. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Discontinuity factors and node-wise group constants were generated by the SERPENT Monte Carlo code and applied in the KIKO3 DMG nodal code. The methodology was tested by calculating a typical VVER-440 calculation benchmark. A reference solution of the benchmark was calculated by using also the SERPENT code and the accuracy of the different approaches was checked against this latter solution.

Kurzfassung

Diskontinuitätsfaktoren und knotenweise Gruppenkonstanten wurden durch den SERPENT Monte-Carlo-Code generiert und im KIKO3 DMG-Knotencode angewendet. Die Methodik wurde durch die Berechnung eines typischen VVER-440-Berechnungsmaßstabs getestet. Eine Referenzlösung des Benchmarks wurde ebenfalls unter Verwendung des SERPENT-Codes berechnet und die Genauigkeit der verschiedenen Ansätze gegen diese Lösung geprüft.


* E-mail:

References

1 Henry, A. F.: Nuclear Reactor Analysis. The MIT Press (1975)Suche in Google Scholar

2 Henry, A. F.; et al.: Continued Development of Nodal Methods for Reactor Analysis. Energy Laboratory Report No.MIT-EL-85-003, March 1985Suche in Google Scholar

3 Henry, A. F.; Mohamed, A. S. G.: The use of Monte Carlo Techniques to determine few-group nodal discontinuity factors. Department of Nuclear Engineering Massachusetts Institute of Technology Cambridge, Massachusetts, U. S. A.Suche in Google Scholar

4 Smith, K. S.: Assembly homogenization techniques for light water reactor analysis. Prog. Nucl. Energy17 (1986) 30333510.1016/0149-1970(86)90035-1Suche in Google Scholar

5 Tahara, Y.; Kanagawa, T.; Sekimoto, H.: Two-Dimensional Baffle/Reflector Constants for Nodal Code in PWR Core Design. J. Nucl. Sci Technol.37 (2000) 98610.1080/18811248.2000.9714982Suche in Google Scholar

6 Tahara, Y.; Sekimoto, H.: Study on Transport-equivalent Diffusion Constants for a Neutron Reflector. Preprint 2001 Fall. Mtg. AESJ, (in Japanese), I66Suche in Google Scholar

7 Tahara, Y., Sekimoto, H.: Reactivity Effect of Iron Reflector in LWR Cores. J. Nucl. Sci Technol.38 (2001) 10210.1080/18811248.2001.9715012Suche in Google Scholar

8 Petkov, P.; et al.: VVER-1000 radial reflector modeling by diffusion nodes. Prog. Nucl. Energy48 (2006) 76477210.1016/j.pnucene.2006.08.001Suche in Google Scholar

9 Sanchez, R.: Assembly homogenization techniques for core calculations. Prog. Nucl. Energy, 51 (2009) 143110.1016/j.pnucene.2008.01.009Suche in Google Scholar

10 Xuhua, Z.; Fu, L.; Dengying, W.; Jianqiu, Y.; Jinfeng, W.; Jiong, G.; Xingqing, J.: Equivalence of control rod model in high temperature gas-cooled reactor. In: Proceedings of the International Conference on Reactor Physics, Nuclear Power: A Sustainable Resource (PHYSOR2008), Interlaken, Switzerland PMid:24265477;Suche in Google Scholar

11 Lee, et al.: IAEAGT-MHR benchmark calculations by using the HELIOS/MASTER physics analysis procedure and the MCNP Monte Carlo code. Nucl. Eng. Design238 (2008) 2654266710.1016/j.nucengdes.2008.04.016Suche in Google Scholar

12 Pós, I., Parkó, T., Patai, Sz. S.: Application of Discontinuity factors in C-PORCA 7 code. Proceedings of the AER Symposium 2008Suche in Google Scholar

13 Xuhua, Z.; Fu, L.; Dengying, W.: Application of the discontinuity factor theory to accelerate routine rod worth calculations for modular HTRs, Application of the discontinuity factor theory to accelerate routine rod worth calculations for modular HTRs. Nuclear Engineering and Design239 (2009) 28128810.1016/j.nucengdes.2008.10.018Suche in Google Scholar

14 Keresztúri, A.; Hegyi, Gy.; Marázcy, Cs.; Panka, I.; Telbisz, M.; Trosztel, I.; Hegedűs, C.: Development and validation of the three-dimensional dynamic code-KIKO3D. Annals of nuclear energy30 (2003) 9312010.1016/S0306-4549(02)00043-9Suche in Google Scholar

15 Pataki, I.; Keresztúri, A.: Development and verification of the new nodal methods in the KIKO3 DMG code. Kerntechnik79 (2014) 31432210.3139/124.110451Suche in Google Scholar

16 Keresztúri, A.; Hegyi, Gy.; Korpás, L.; Maráczy, Cs.; Makai, M.; Telbisz, M.: General features and validation of the recent KARATE-440 code system. International Journal of Nuclear Energy5 (2010) 20723810.1504/IJNEST.2010.033476Suche in Google Scholar

17 Leppänen, J.; Pusa, M.; Fridman, E.: Overview of methodology for spatial homogenization in the SERPENT 2 Monte Carlo code. Annals of Nuclear Energy96 (2016) 12613610.1016/j.anucene.2016.06.007Suche in Google Scholar

18 Krýsl, V.; Mikoláš, P.; Sprinzl, D.; Švarný, J.: “Full Core” VVER-440 Pin Power Distribution Calculation Benchmark. Proceedings of the twenty-first Symposium of AER, Dresden, Germany, 2011Suche in Google Scholar

19 Krýsl, V.; Mikoláš, P.; Sprinzl, D.; Švarný, J.; Temesvári, E.; Pós, I.; Heraltová, L.: “FULL-CORE” VVER-440 calculation benchmark. Kerntechnik79 (2014) 27928810.3139/124.110453Suche in Google Scholar

20 Leppänen, J.: SERPENT a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code. (2015) [Online]. Available: http://montecarlo.vtt.fi/Suche in Google Scholar

Received: 2018-01-31
Published Online: 2018-08-31
Published in Print: 2018-08-27

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2017
  5. Technical Contributions/Fachbeiträge
  6. SIMULATE5-HEX extension for VVER analyses
  7. Application of discontinuity factors and group constants generated by SERPENT in the KIKO3 DMG code
  8. “Full-Core” VVER-440 extended calculation benchmark
  9. Calculation of “full core” VVER-1000 benchmark
  10. Study of neutron-physical characteristics of VVER-1200 considering feedbacks using MCU Monte Carlo code
  11. Advantages of VVER-440 fuel cycles with new fuel assemblies
  12. A neutronics feasibility study on utilization of a thinned cladding fuel design at Loviisa NPP
  13. Investigation of fuel cycles containing Generation IV reactors and VVER-1200 reactors
  14. Calculations of spent fuel isotopic composition for fuel rod from VVER-440 fuel assembly benchmark using several evaluated nuclear data libraries
  15. Simulation of standard temperature control indications at the outlet of a fuel assembly of VVER1000 reactor of Rostov NPP unit No. 2
  16. Power transient calculations with VERONA
  17. Physical startup tests calculations for Dukovany NPP using MOBY-DICK macrocode
  18. Renewing the refueling neutron monitoring and reactivity measurement systems at Paks NPP
  19. Hot channel calculation methodologies in case of VVER-1000/1200 reactors
  20. Contribution to the validation of the VVER-1000 Temelin NPP computing model for the ATHLET/DYN3D coupled codes
  21. Simulation of a hypothetical MSLB core transient in VVER-1000 with several stuck rods
Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110911/html
Button zum nach oben scrollen