Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
-
Sadia Noor
Abstract
Micellar solubilization and physicochemical behaviour of [Ni(phen)3]F2 EtOH · MeOH · 8 H2O complex in sodium 2-ethylhexyl sulfate and sodium bis(2-ethyl hexyl) sulfosuccinate is addressed in this paper. The interactions of surfactants in the solution of nickel complex were studied by UV-Vis spectroscopy and electrical conductivity. The extent of solubilization in terms of partitioning and binding parameters was determined by UV-Vis spectroscopy, whereas conductivity data were employed to calculate critical micellar concentration and other thermodynamic parameters of micellization. The value of critical micellar concentration increased in both surfactants due to structure breaking effect of nickel complex. The complex showed significant antioxidant radical scavenging and hemolytic activities, without any substantial cytotoxic activity against 3T3 cell line.
Kurzfassung
Die mizellare Solubilisierung und das physikochemische Verhalten des [Ni(phen)3]F2 EtOH · MeOH · 8 H2O-Komplexes in Natrium-2-ethylhexylsulfat und Natrium-bis-(2-ethylhexyl)sulfosuccinat werden in diesem Paper behandelt. Die Wechselwirkungen von Tensiden in der Nickelkomplexlösung wurden mittels UV-Vis-Spektroskopie und elektrischer Leitfähigkeit untersucht. Das Ausmaß der Solubilisierung hinsichtlich der Verteilungs- und Bindungsparameter wurde durch UV-Vis-Spektroskopie bestimmt, wohingegen Leitfähigkeitsdaten verwendet wurden, um die kritische Mizellenbildungskonzentration und weitere thermodynamische Parameter der Mizellenbildung zu berechnen. Der Wert der kritischen Mizellenbildungskonzentration stieg für beide Tenside aufgrund der strukturaufbrechenden Wirkung des Nickelkomplexes an. Der Komplex zeigte signifikante antioxidative Radikalfänger- und hämolytische Aktivitäten ohne wesentliche zytotoxische Aktivität gegenüber der 3T3-Zelllinie.
References
1. Chin, L. F., Kong, S. M., Seng, H. L., Khoo, K. S., Vikneswaran, R., Teoh, S. G., Ahmad, M., Khoo, S. B. A., Maah, M. J. and Ng, C. H.: Synthesis, characterization and biological properties of cobalt (II) complexes of 1, 10-phenanthroline and maltol, J. Inorg. Biochem.105 (2011) 339–347. PMid:21421121; 10.1016/j.jinorgbio.2010.11.018Suche in Google Scholar PubMed
2. Tabrizi, L., McArdle, P., Ektefan, M. and Chiniforoshan, H.: Synthesis, crystal structure, spectroscopic and biological properties of mixed ligand complexes of cadmium (II), cobalt (II) and manganese (II) valproate with 1, 10-phenanthroline and imidazole, Inorg. Chimi. Acta.439 (2016) 138–144. 10.1016/j.ica.2015.10.015Suche in Google Scholar
3. Usman, M. and Siddiq, M.: Surface and micellar properties of chloroquine diphosphate and its interactions with surfactants and human serum albumin, J. Chem. Thermodyn.58 (2013) 359–366. 10.1016/j.jct.2012.11.022Suche in Google Scholar
4. Usman, M. and Siddiq, M.: Probing the micellar properties of Quinacrine 2HCl and its binding with surfactants and Human Serum Albumin, Spectrochim. Acta.113 (2013) 182–190. PMid:23727671; 10.1016/j.saa.2013.04.089Suche in Google Scholar PubMed
5. Taboada, P., Ruso, J. M., Garcia, M. and Mosquera, V.: Surface properties of some amphiphilic antidepressant drugs, Colloids Surf. A.179 (2001) 125–128. 10.1016/S0927-7757(00)00730-5Suche in Google Scholar
6. Yu, G.-J., Chen, X.-Y., Mao, S.-Z., Liu, M.-L. and Du, Y.-R.: Hydrophobic terminal group of surfactant initiating micellization as revealed by 1H NMR spectroscopy Chin. Chem. Let.28 (2017) 1413–1416. 10.1016/j.cclet.2017.04.013Suche in Google Scholar
7. Čudina, O., Brborić, J., Janković, I., Karljiković-Rajić, K. and Vladimirov, S.: Study of valsartan interaction with micelles as a model system for biomembranes, Colloids Surf. A: Physicochem. Eng. Asp.65 (2008) 80–84. PMid:18439806; 10.1016/j.colsurfb.2008.03.002Suche in Google Scholar PubMed
8. Saeed, R., Usman, M., Mansha, A., Rasool, N., Naqvia, S. A. R., Zahoor, A. F., Rahman, H. M. A., Rana, U. A. and Al-Zahrani, E.: Partitioning of structurally related thiophene derivatives betweensolvent and micellar media of anionic surfactant sodium dodecylsulphateColloids Surf. B.: Physicochem. Eng. Asp.512 (2017) 51–60. 10.1016/j.colsurfa.2016.10.016Suche in Google Scholar
9. Younas, N., Rashid, M. A., Usman, M., Nazir, S., Noor, S., Basit, A. and Jamil, M.: Solubilization of Ni imidazole complex in micellar media of anionic surfactants, sodium dodecyl sulfate and sodium stearate, J. Surf. Det.20 (2017) 1311–1320. 10.1007/s11743-017-1997-xSuche in Google Scholar
10. Younas, N., Rashid, M. A., Nazir, S., Usman, M., Sarfraz, R. A., Jamil, A. and Whitwod, A. C.: Spectroscopic and conductometric study of interaction of anionic surfactants with[Co(phen)3]F2 · 2H2O complex, J. Mol. Liq.240 (2017) 351–360; 10.1016/j.molliq.2017.05.052. 10.1016/j.molliq.2017.05.052Suche in Google Scholar
11. Noor, S., Younas, N., Rashid, M. A., Nazir, S., Usman, M. and Naz, T.: Spectroscopic, conductometric and biological investigation Of [Ni(phen)3]F2 · EtOH · MeOH · 8 H2O complex in anionic micellar media, Colloid Interface Sci. Commun.27 (2018) 26–34. 10.1016/j.colcom.2018.09.004Suche in Google Scholar
12. Arif, M., Chohan, Z. H., Bukhari, I. H., Anjum, S. and Tariq, R. H.: Fluoride-Water Hydrogen Bonding: X-Ray Structure Of Tris(1, 10-Phenanthroline) Nickel (II) Fluoride-Ethanol (1/2) Methanol (1/2) Octahydrate, Rev. Inorg. Chem.26 (2006) 379–384. 10.1515/REVIC.2006.26.4.379Suche in Google Scholar
13. Arif, M., Nazir, S., Iqbal, M. S. and Anjum, S.: Synthesis and characterization of transition metal fluoride complexes with imidazole: X-ray crystal structure reveals short hydrogen bonds between lattice water and lattice fluoride, Inorg. Chimi. Acta.362 (2009) 1624–1628; 1624. 10.1016/j.ica.2008.08.035Suche in Google Scholar
14. Nazir, S., Rashid, M. A., Arif, M., Romerosa, A. and Whitwood, A. C.: Metal backbone Polymers [M(isn-κNpy)4(μ-SiF6-κF,F′)]n (M=Cu, Co, Ni; isn = isonicotinamide) containing an unusual hexafluoridosilicato bridge, Inorg. Chim Acta.427 (2015) 198–202. 10.1016/j.ica.2014.12.020Suche in Google Scholar
15. Nazir, S., Arif, M., Rashid, M. A. and Whitwood, A. C.: Structure of [Co(im)6]SiF6: short hydrogen bonds involving SiF62– ions, Chinese J. Struc. Chem.36 (2017) 965–970. 10.14102/j.cnki.0254-5861.2011-1384Suche in Google Scholar
16. Chambers, J. F., Stokes, J. M. and Stokes, R. H.: Conductances of concentrated aqueous sodium and potassium chloride solutions at 25, J. Phys. Chem. A.60 (1956) 985–986. 10.1021/j150541a040Suche in Google Scholar
17. Shedlovsky, T.: The electrolytic conductivity of some uni-univalent electrolytes in water at 25, J. Am. Chem. Soc.54 (1932) 1411–1428. 10.1021/ja01343a020Suche in Google Scholar
18. Rajarajeswari, C., Ganeshpandian, M., Palaniandavar, M., Riyasdeen, A. and Akbarsha, M. A.: Mixed ligand copper (II) complexes of 1, 10-phenanthroline with tridentate phenolate/pyridyl/(benz) imidazolyl Schiff base ligands: Covalent vs non-covalent DNA binding, DNA cleavage and cytotoxicity, J. Inorg. Biochem.140 (2014) 255–268. PMid:25199844; 10.1016/j.jinorgbio.2014.07.016Suche in Google Scholar PubMed
19. Shalel, S., Streichman, S. and Marmu, A.: The Mechanism of Hemolysis by Surfactants: Effect of Solution Composition, J. Colloid. Interface Sci.252 (2002) 66–76. PMid:16290763; 10.1006/jcis.2002.8474Suche in Google Scholar PubMed
20. Dickson, F. M., Lawrence, J. N. and Benford, D. J.: Surfactant-induced cytotoxicity in cultures of human keratinocytes and a commercially available cell line (3T3), Toxicol. in Vitro.7 (1993). 381–384. 10.1016/0887-2333(93)90031-YSuche in Google Scholar PubMed
21. Usman, M., Cheema, M. A., Khan, A., Farooqi, Z. H., Mosquera, V. and Siddiq, M.: A comparative study of thermodynamic properties of structurally related phenothiazine drugs in aqueous solution, J. Chil. Chem. Soc.58 (2013) 1842–1845. 10.4067/S0717-97072013000300010Suche in Google Scholar
22. Hanif, S., Usman, M., Hussain, A., Rasool, N., Zubair, M. and Rana, U. A.: Solubilization of Benzothiazole (BNZ) by micellar media of Sodium dodecyl sulphate and Cetyl trimethylammonium bromide, J. Mol. Liq.211 (2015) 7–14. 10.1016/j.molliq.2015.06.018Suche in Google Scholar
23. Mehta, S. K., Bhasin, K. K., Kumar, A. and Dham, S.: Micellar behavior of dodecyldimethylethyl ammonium bromide and dodecyltrimethylammonium chloride in aqueous media in the presence of diclofenac sodium, Colloids Surf. A.278 (2006) 17–22. 10.1016/j.colsurfa.2005.11.071Suche in Google Scholar
24. Sharma, R. and Jani, D.: Interaction of Cationic CTAB Surfactant with Curcumin, an Anticarcinogenic Drug: Spectroscopic Investigation. Tenside Surfact. Det.50 (2013) 283–288. 10.3139/113.110261Suche in Google Scholar
25. Ali, A., Uzair, S. and Farooq, U.: Interactions of Cationic, Anionic and Nonionic Surfactants with Cresol Red Dye in Aqueous Solutions: Conductometric, Tensiometric, and Spectroscopic Studies. Tenside Surfact. Det.54 (2017) 342–352. 10.3139/113.110509Suche in Google Scholar
26. Irfan, M., Usman, M., Mansha, A., Rasool, N., Ibrahim, M., Rana, U. A., Siddiq, M., Zia-Ul-Haq, M., Jaafar, H. Z. and Khan, S. U. D.: Thermodynamic and spectroscopic investigation of interactions between reactive red 223 and reactive orange 122 anionic dyes and cetyltrimethyl ammonium bromide (CTAB) cationic surfactant in aqueous solution, Sci. World J.2014 (2014) 1–8. PMid:25243216; 10.1155/2014/540975Suche in Google Scholar PubMed PubMed Central
27. Hao, L. S., Deng, Y. T., Zhou, L.S., Ye, H., Nan, Y. Q. and Hu, P.: Mixed micellization and the dissociated margules model for cationic/anionic surfactant systems, J. Phys. Chem. B116 (2012) 5213–5225. PMid:22497348; 10.1021/jp300568kSuche in Google Scholar PubMed
28. Ul Haq, N., Usman, M., Mansha, A., Rashid, M. A., Munir, M. and Rana, U. A.: Solubilization of reactive blue 19 by the micelles of cationic surfactant Cetyltrimethyl ammonium bromide (CTAB), J. Mol. Liq.196 (2014) 264–269. 10.1016/j.molliq.2014.03.038Suche in Google Scholar
29. Kawamura, H., Manabe, M., Miyamoto, Y., Fujita, Y. and Tokunaga, S.: Partition coefficients of homologous. omega.-phenylalkanols between water and sodium dodecyl sulfate micelles, J. Phys. Chem. A.93 (1989) 5536–5540. 10.1021/j100351a042Suche in Google Scholar
30. García-Río, L., Hervés, P., Mejuto, J. C., Parajó, M. and Perez-Juste, J.: Association Constant of Crystal Violet in Micellar Aggregates: Determination by Spectroscopic Techniques, Chem. Res. (S), 11 (1998) 716–717. 10.1039/a803135eSuche in Google Scholar
31. Farías, T., De Menorval, L. C., Zajac, J. and Rivera, A.: Solubilization of drugs by cationic surfactants micelles: conductivity and 1H NMR experiments, Colloids Surf. A.345 (2009) 51–57. 10.1016/j.colsurfa.2009.04.022Suche in Google Scholar
32. Sathiyaraj, S., Sampath, K., Raja, G., Butcher, R. J., Gupta, S. K. and Jayabalakrishnan, C.: DNA binding/cleavage, antioxidant and cytotoxic activities of water soluble cobalt (II) and copper (II) antipyrine complexes, Inorg. Chimi. Acta.406 (2013) 44–52. 10.1016/j.ica.2013.07.001Suche in Google Scholar
33. Tan, A., Gagné, S., Lévesque, I. A., Lachance, S., Boudreau, N. and Lévesque, A.: Impact of hemolysis during sample collection: How different is drug concentration in hemolyzed plasma from that of normal plasma?, J. Chromatogr. B.901 (2012) 79–84. PMid:22748717; 10.1016/j.jchromb.2012.06.002Suche in Google Scholar PubMed
34. Ismail, D. A., Ahmed, S. M., Ahmed, H. M., Awad, A. I. and El-Sharkawy, H. A.: Synthesis and Biological Activity of Alkyl Pyridinium Aldoxime Based Surfactants. Tenside Surfact. Det.53(2010) 319–323. 10.3139/113.110438Suche in Google Scholar
35. Laranjeira, M. S., Moço, A., Ferreira, J., Coimbra, S., Costa, E., Santos-Silva, A., Ferreira, P. J. and Monteiro, F. J.: Different hydroxyapatite magnetic nanoparticles for medical imaging: Its effects on hemostatic, hemolytic activity and cellular cytotoxicity, Colloids Surf. B.146 (2016) 363–374. PMid:27388965; 10.1016/j.colsurfb.2016.06.042Suche in Google Scholar PubMed
36. Rajarajeswari, C., Ganeshpandian, M., Palaniandavar, M., Riyasdeen, A. and Akbarsha, M. A.: Mixed ligand copper (II) complexes of 1,10-phenanthroline with tridentate phenolate/pyridyl/(benz) imidazolyl Schiff base ligands: Covalent vs non-covalent DNA binding, DNA cleavage and cytotoxicity, J. Inorg. Biochem.140 (2014) 255–268. PMid:25199844; 10.1016/j.jinorgbio.2014.07.016Suche in Google Scholar PubMed
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies