Abstract
In this study, the glycerol solutions were fermented using Lactobacillus casei bacteria. The broths were pre-treated by microfiltration, followed by a further separation with nanofiltration. The latter process was carried out in two stages, using the NF270 and NF90 membranes, respectively. The concentrates thus obtained were enriched with citric acid (first stage) and then with lactic acid and glycerol (second stage). By means of SEM and AFM microscopy, as well as ATR-FTIR analysis, the intensity of membrane-fouling was studied. The colloidal fouling and bio-fouling caused a more than two-fold decrease in the permeate flux during microfiltration of the broth. This pre-treatment stage was effective, and a permeate turbidity of less than 0.2 NTU was obtained. However, the nanofiltration membranes exhibited a 30 % flux decline over the course of the process, mainly due to the organic fouling.
[1] Annand, P., Saxena, R. K., & Marwah, R. G. (2011). A novel downstream process for 1,3-propanediol from glycerol-based fermentation. Applied Microbiology and Biotechnology, 90, 1267–1276. DOI: 10.1007/s00253-011-3161-2. http://dx.doi.org/10.1007/s00253-011-3161-210.1007/s00253-011-3161-2Search in Google Scholar
[2] Barbirato, F., Himmi, E. H., Conte, T., & Bories, A. (1998). 1,3-Propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries. Industrial Crops and Products, 7, 281–289. DOI: 10.1016/s0926-6690(97)00059-9. http://dx.doi.org/10.1016/S0926-6690(97)00059-910.1016/S0926-6690(97)00059-9Search in Google Scholar
[3] Belfer, S., Fainshtain, R., Purinson, Y., Gilron, J., Nyström, M., & Mänttäri, M. (2004). Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. Journal of Membrane Science, 239, 55–64. DOI: 10.1016/j.memsci.2003.09.029. http://dx.doi.org/10.1016/j.memsci.2003.09.02910.1016/j.memsci.2003.09.029Search in Google Scholar
[4] Bellona, C., Marts, M., & Drewes, J. E. (2010). The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membranes. Separation and Purification Technology, 74, 44–54. DOI: 10.1016/j.seppur.2010.05.006. http://dx.doi.org/10.1016/j.seppur.2010.05.00610.1016/j.seppur.2010.05.006Search in Google Scholar
[5] Drożdżyńska, A., Leja, K., & Czaczyk, K. (2011). Biotechnological production of 1,3-propanediol from crude glycerol. BioTechnologia — Journal of Biotechnology, Computational Biology and Bionanotechnology, 92, 92–100. Search in Google Scholar
[6] González, M. I., Alvarez, S., Riera, F. A., & álvarez, R. (2008). Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination, 228, 84–96. DOI: 10.1016/j.desal.2007.08.009. http://dx.doi.org/10.1016/j.desal.2007.08.00910.1016/j.desal.2007.08.009Search in Google Scholar
[7] Gryta, M., Bastrzyk, J., & Lech, D. (2012). Evaluation of fouling potential of nanofiltration membranes based on the dynamic contact angle measurements. Polish Journal of Chemical Technology, 14, 97–104. DOI: 10.2478/v10026-012-0091-4. http://dx.doi.org/10.2478/v10026-012-0091-410.2478/v10026-012-0091-4Search in Google Scholar
[8] Gryta, M., Markowska-Szczupak, A., Bastrzyk, J., & Tomczak, W. (2013). The study of membrane distillation used for separation of fermenting glycerol solutions. Journal of Membrane Science, 431, 1–8. DOI: 10.1016/j.memsci.2012.12.032. http://dx.doi.org/10.1016/j.memsci.2012.12.03210.1016/j.memsci.2012.12.032Search in Google Scholar
[9] Himstedt, H. H, Marshall, K. M., & Wickramasinghe, S. R. (2011). pH-responsive nanofiltration membranes by surface modification. Journal of Membrane Science, 366, 373–381. DOI: 10.1016/j.memsci.2010.10.027. http://dx.doi.org/10.1016/j.memsci.2010.10.02710.1016/j.memsci.2010.10.027Search in Google Scholar
[10] Hoek, E. M. V., Bhattacharjee, S., & Elimelech, M. (2003). Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir, 19, 4836–4847. DOI: 10.1021/la027083c. http://dx.doi.org/10.1021/la027083c10.1021/la027083cSearch in Google Scholar
[11] Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147, 251–255. DOI: 10.1016/s0011-9164(02)00545-3. http://dx.doi.org/10.1016/S0011-9164(02)00545-310.1016/S0011-9164(02)00545-3Search in Google Scholar
[12] Karakulski, K., Gryta, M., & Bastrzyk, J. (2013). Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes. Chemical Papers, 67, 1164–1171 DOI: 10.2478/s11696-013-0314-z. http://dx.doi.org/10.2478/s11696-013-0314-z10.2478/s11696-013-0314-zSearch in Google Scholar
[13] Kosvintsev, S., Cumming, I., Holdich, R., Lloyd, D., & Starov, V. (2004). Sieve mechanism of microfiltration separation. Colloids and Surfaces A: Physicochemical Engineering Aspects, 230, 167–182. DOI: 10.1016/j.colsurfa.2003.09.027. http://dx.doi.org/10.1016/j.colsurfa.2003.09.02710.1016/j.colsurfa.2003.09.027Search in Google Scholar
[14] Lee, D. J., Chen, G. Y., Chang, Y. R., & Lee, K. R. (2012). Harvesting of chitosan coagulated Chlorella vulgaris using cyclic membrane filtration-cleaning. Journal of the Taiwan Institute of Chemical Engineers, 43, 948–952. DOI: 10.1016/j.jtice.2012.07.002. http://dx.doi.org/10.1016/j.jtice.2012.07.00210.1016/j.jtice.2012.07.002Search in Google Scholar
[15] Luo, J., & Wan, Y. (2011). Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes. Journal of Membrane Science, 372, 145–153. DOI: 10.1016/j.memsci.2011.01.066. http://dx.doi.org/10.1016/j.memsci.2011.01.06610.1016/j.memsci.2011.01.066Search in Google Scholar
[16] Mohammad, A. W., Basha, R. K., & Leo, C. P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organics component and salts on retention. Journal of Food Engineering, 97, 510–518. DOI: 10.1016/j.jfoodeng.2009.11.010. http://dx.doi.org/10.1016/j.jfoodeng.2009.11.01010.1016/j.jfoodeng.2009.11.010Search in Google Scholar
[17] Norberg, D., Hong, S., Taylor, J., & Zhao, Y. (2007). Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes. Desalination, 202, 45–52. DOI: 10.1016/j.desal.2005.12.037. http://dx.doi.org/10.1016/j.desal.2005.12.03710.1016/j.desal.2005.12.037Search in Google Scholar
[18] Oatley, D. L., Llenas, L., Pérez, R., Williams, P. M., Martínez-Lladó, X., & Rovira, M. (2012). Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation. Advances in Colloid and Interface Science, 173, 1–11. DOI: 10.1016/j.cis.2012.02.001. http://dx.doi.org/10.1016/j.cis.2012.02.00110.1016/j.cis.2012.02.001Search in Google Scholar PubMed
[19] Subramani, A., & Hoek, E. M. V. (2010). Biofilm formation, cleaning, re-formation on polyamide composite membranes. Desalination, 257, 73–79. DOI: 10.1016/j.desal.2010.03.003. http://dx.doi.org/10.1016/j.desal.2010.03.00310.1016/j.desal.2010.03.003Search in Google Scholar
[20] Tang, C. Y., Kwon, Y. N., & Leckie, J. O. (2009). Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination, 242, 168–182. DOI: 10.1016/j.desal.2008.04.004. http://dx.doi.org/10.1016/j.desal.2008.04.00410.1016/j.desal.2008.04.004Search in Google Scholar
[21] Tanninen, J., Mänttäri, M., & Nyström, M. (2006). Effect of salt mixture concentration on fractionation with NF membranes. Journal of Membrane Science, 283, 57–64. DOI: 10.1016/j.memsci.2006.06.012. http://dx.doi.org/10.1016/j.memsci.2006.06.01210.1016/j.memsci.2006.06.012Search in Google Scholar
[22] Van der Bruggen, B., Schaep, J., Wilms, D., & Vandecasteele, C. (1999). Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. Journal of Membrane Science, 156, 29–41. DOI: 10.1016/s0376-7388(98)00326-3. http://dx.doi.org/10.1016/S0376-7388(98)00326-310.1016/S0376-7388(98)00326-3Search in Google Scholar
[23] Weng, Y. H., Wei, H. J., Tsai, T. Y., Chen, W. H., Wei, T. Y., Hwang, W. S., Wang, C. P., & Huang, C. P. (2009). Separation of acetic acid from xylose by nanofiltration. Separation and Purification Technology, 67, 95–102. DOI: 10.1016/j.seppur.2009.03.030. http://dx.doi.org/10.1016/j.seppur.2009.03.03010.1016/j.seppur.2009.03.030Search in Google Scholar
[24] Wu, R. C., Ren, H. J., Xu, Y. Z., & Liu, D. H. (2010). The final recover of salt from 1,3-propanadiol fermentation broth. Separation and Purification Technology, 73, 122–125. DOI: 10.1016/j.seppur.2010.03.013. http://dx.doi.org/10.1016/j.seppur.2010.03.01310.1016/j.seppur.2010.03.013Search in Google Scholar
[25] Xiu, Z. L., & Zeng, A. P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Applied Microbiology and Biotechnology, 78, 917–926. DOI: 10.1007/s00253-008-1387-4. http://dx.doi.org/10.1007/s00253-008-1387-410.1007/s00253-008-1387-4Search in Google Scholar PubMed
[26] Xu, P., Drewes, J. E., Kim, T. U., Bellona, C., & Amy, G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. Journal of Membrane Science, 279, 165–175. DOI: 10.1016/j.memsci.2005.12.001. http://dx.doi.org/10.1016/j.memsci.2005.12.00110.1016/j.memsci.2005.12.001Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy