Abstract
Molecularly imprinted polymer-coated bacterial cellulose nanofibers have been prepared by immersing solvent treated-bacterial cellulose into a dilute pre-polymerization mixture solution prior to the polymerization process. The quercetin-imprinted polymer coating bacterial cellulose (QIP-BC) nanofibers show discrete nanoparticles encapsulated along the BC nanofibers. The binding capacity of dried QIP-BC was approximately 3 mg per gram of the polymer. The obtained results indicated that QIP-BC nanofibers provided a three fold higher recognition ability for quercetin than quercetin-imprinted nanospheres. This technique can be easily used to combine two fascinating materials like BC nanofibers and molecularly imprinted polymers (MIPs) to afford promising polymer composites that are useful in various innovative applications in biomedical, pharmaceutical, and industrial sectors.
[1] Andrade, F. K., Costa, R., Domingues, L., Soares, R., & Gama, M. (2010). Improving bacterial cellulose for blood vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomaterialia, 6, 4034–4041. DOI: 10.1016/j.actbio.2010.04.023. http://dx.doi.org/10.1016/j.actbio.2010.04.02310.1016/j.actbio.2010.04.023Search in Google Scholar PubMed
[2] Augusto, F., Hantao, L. W., Mogollón, N. G. S., & Braga, S. C. G. N. (2013). New materials and trends in sorbents for solidphase extraction. TrAC — Trends in Analytical Chemistry, 43, 14–23. DOI: 10.1016/j.trac.2012.08.012. http://dx.doi.org/10.1016/j.trac.2012.08.01210.1016/j.trac.2012.08.012Search in Google Scholar
[3] Chen, P., Cho, S. Y., & Jin, H. J. (2010). Modification and applications of bacterial celluloses in polymer science. Macromolecular Research, 18, 309–320. DOI: 10.1007/s13233-010-0404-5. http://dx.doi.org/10.1007/s13233-010-0404-510.1007/s13233-010-0404-5Search in Google Scholar
[4] Chen, L., Xu, S., & Li, J. (2011). Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews, 40, 2922–2942. DOI: 10.1039/c0cs00084a. http://dx.doi.org/10.1039/c0cs00084a10.1039/c0cs00084aSearch in Google Scholar PubMed
[5] Choi, Y. J., Ahn, Y., Kang, M. S., Jun, H. K., Kim, I. S., & Moon, S. H. (2004). Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. Journal of Chemical Technology and Biotechnology, 79, 79–84. DOI: 10.1002/jctb.942. http://dx.doi.org/10.1002/jctb.94210.1002/jctb.942Search in Google Scholar
[6] Dobre, L. M., Stoica-Guzun, A., Stroescu, M., Jipa, I. M., Dobre, T., Ferdeş, M., & Ciumpiliac, S. (2012). Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chemical Papers, 66, 144–151. DOI: 10.2478/s11696-011-0086-2. http://dx.doi.org/10.2478/s11696-011-0086-210.2478/s11696-011-0086-2Search in Google Scholar
[7] Fu, L., Zhang, J., & Yang, G. (2013). Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydrate Polymers, 92, 1432–1442. DOI: 10.1016/j.carbpol.2012.10.071. http://dx.doi.org/10.1016/j.carbpol.2012.10.07110.1016/j.carbpol.2012.10.071Search in Google Scholar PubMed
[8] Gatenholm, P., & Klemm, D. (2010). Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bulletin, 35, 208–213. DOI: 10.1557/mrs2010.653. http://dx.doi.org/10.1557/mrs2010.65310.1557/mrs2010.653Search in Google Scholar
[9] Hobzova, R., Duskova-Smrckova, M., Michalek, J., Karpushkin, E., & Gatenholm, P. (2012). Methacrylate hydrogels reinforced with bacterial cellulose. Polymer International, 61, 1193–1201. DOI: 10.1002/pi.4199. http://dx.doi.org/10.1002/pi.419910.1002/pi.4199Search in Google Scholar
[10] Huang, H. C., Chen, L. C., Lin, S. B., & Chen, H. H. (2011). Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation. Carbohydrate Polymers, 83, 979–987. DOI: 10.1016/j.carbpol.2010.09.011. http://dx.doi.org/10.1016/j.carbpol.2010.09.01110.1016/j.carbpol.2010.09.011Search in Google Scholar
[11] Kramer, F., Klemm, D., Schumann, D., Heßler, N., Wesarg, F., Fried, W., & Stadermann, D. (2006). Nanocellulose polymer composites as innovative pool for (bio)material development. Macromolecular Symposia, 244, 136–148. DOI: 10.1002/masy.200651213. http://dx.doi.org/10.1002/masy.20065121310.1002/masy.200651213Search in Google Scholar
[12] Mendoza, E. E., & Burd, R. (2011). Quercetin as a systemic chemopreventative agent: Structural and functional mechanisms. Mini-Reviews in Medicinal Chemistry, 11, 1216–1221. DOI: 10.2174/13895575111091216. 10.2174/13895575111091216Search in Google Scholar PubMed
[13] Piacham, T., Josell, Å., Arwin, H., Prachayasittikul, V., & Ye, L. (2005). Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photoradical initiator. Analytica Chimica Acta, 536, 191–196. DOI: 10.1016/j.aca.2004.12.067. http://dx.doi.org/10.1016/j.aca.2004.12.06710.1016/j.aca.2004.12.067Search in Google Scholar
[14] Piacham, T., Nantasenamat, C., Suksrichavalit, T., Puttipanyalears, C., Pissawong, T., Maneewas, S., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2009). Synthesis and theoretical study of molecularly imprinted nanospheres for recognition of tocopherols. Molecules, 14, 2985–3002. DOI: 10.3390/molecules14082985. http://dx.doi.org/10.3390/molecules1408298510.3390/molecules14082985Search in Google Scholar PubMed PubMed Central
[15] Saliza, A., Yusof, N. A., Abdullah, A. H., & Haron, M. J. (2012). Synthesis and characterization of hybrid molecularly imprinted polymer (MIP) membranes for removal of methylene blue (MB). Molecules, 17, 1916–1928. DOI: 10.3390/molecules17021916. http://dx.doi.org/10.3390/molecules1702191610.3390/molecules17021916Search in Google Scholar PubMed PubMed Central
[16] Wang, J., Yang, C., Wan, Y., Luo, H., He, F., Dai, K., & Huang, Y. (2013). Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering. Soft Materials, 11, 173–180. DOI: 10.1080/1539445x.2011.611204. http://dx.doi.org/10.1080/1539445X.2012.66922110.1080/1539445X.2011.611204Search in Google Scholar
[17] Ye, L., Cormack, P. A. G., & Mosbach, K. (1999). Molecularly imprinted monodisperse microspheres for competitive radioassay. Analytical Communications, 36, 35–38. DOI: 10.1039/a809014i. http://dx.doi.org/10.1039/a809014i10.1039/a809014iSearch in Google Scholar
[18] Ye, L., & Mosbach, K. (2008). Molecular imprinting: Synthetic materials as substitutes for biological antibodies and receptors. Chemistry of Materials, 20, 859–868. DOI: 10.1021/cm703190w. http://dx.doi.org/10.1021/cm703190w10.1021/cm703190wSearch in Google Scholar
[19] Yoshimatsu, K., Ye, L., Stenlund, P., & Chronakis, I. S. (2008). A simple method for preparation of molecularly imprinted nanofiber materials with signal transduction ability. Chemical Communications, 2008, 2022–2024. DOI: 10.1039/b719586a. http://dx.doi.org/10.1039/b719586a10.1039/b719586aSearch in Google Scholar PubMed
[20] Zhang, H., Piacham, T., Drew, M., Patek, M., Mosbach, K., & Ye, L. (2006). Molecularly imprinted nanoreactors for regioselective Huisgen 1,3-dipolar cycloaddition reaction. Journal of the American Chemical Society, 128, 4178–4179. DOI: 10.1021/ja057781u. http://dx.doi.org/10.1021/ja057781u10.1021/ja057781uSearch in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy