Home Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
Article
Licensed
Unlicensed Requires Authentication

Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite

  • Bilge Eren EMAIL logo , Reyhan Aydin and Erdal Eren
Published/Copyright: January 28, 2014
Become an author with De Gruyter Brill

Abstract

This study presents a rapid, economical and “green” N-formylation of anilines with formic acid (FA) using Fe(III)-exchanged sepiolite (IES) as a catalyst. The IES exhibited excellent catalytic properties and the reactions were complete within 20.90 min to afford products with high yields. The adsorption mechanism of FA on the IES sample was studied by infrared (IR) spectroscopy at a temperature range of 120–400°C. The thermal desorption of pyridine was detected by the IR technique to estimate the acidity of IES. Lewis acid-bound pyridine bands at 1618–1631 cm-1 and 1443–1445 cm-1 were observed even after the IES sample was heated above 400°C.

[1] Aramendía, M. A., Borau, V., Jiménez, C., Marinas, J. M., Porras, A., Urbano, F. J., & Villar, L. (1994). Sepiolites as supports for Pd catalysts used in organic reduction processes. Journal of Molecular Catalysis, 94, 131–147. DOI: 10.1016/0304-5102(94)87034-9. http://dx.doi.org/10.1016/0304-5102(94)87034-910.1016/0304-5102(94)87034-9Search in Google Scholar

[2] Borowiak, M. A., Jamróz, M. H., & Larsson, R. (2000). Catalytic decomposition of formic acid on oxide catalysts. III. IOM model approach to bimolecular mechanism. Journal of Molecular Catalysis A: Chemical, 152, 121–132. DOI: 10.1016/s1381-1169(99)00271-x. http://dx.doi.org/10.1016/S1381-1169(99)00271-X10.1016/S1381-1169(99)00271-XSearch in Google Scholar

[3] Chen, B. C., Bednarz, M. S., Zhao, R., Sundeen, J. E, Chen, P., Shen, Z., Skoumbourdis, A. P., & Barrish, J. C. (2000). A new facile method for the synthesis of 1-arylimidazole-5-carboxylates. Tetrahedron Letters, 41, 5453–5456. DOI: 10.1016/s0040-4039(00)00910-2. http://dx.doi.org/10.1016/S0040-4039(00)00910-210.1016/S0040-4039(00)00910-2Search in Google Scholar

[4] Das, B., Krishnaiah, M., Balasubramanyam, P., Veeranjaneyulu, B., & Kumar, D. N. (2008). A remarkably simple N-formylation of anilines using polyethylene glycol. Tetrahedron Letters, 49, 2225–2227. DOI: 10.1016/j.tetlet.2008.02.050. http://dx.doi.org/10.1016/j.tetlet.2008.02.05010.1016/j.tetlet.2008.02.050Search in Google Scholar

[5] Dorado, F., de Lucas, A., García, P. B., Romero, A., & Valverde, J. L. (2006). Copper ion-exchanged and impregnated Fe-pillared clays: Study of the influence of the synthesis conditions on the activity for the selective catalytic reduction of NO with C3H6. Applied Catalysis A: General, 305, 189–196. DOI: 10.1016/j.apcata.2006.03.022. http://dx.doi.org/10.1016/j.apcata.2006.03.02210.1016/j.apcata.2006.03.022Search in Google Scholar

[6] Eren, E., Gumus, H., & Sarihan, A. (2012). An investigation of the catalytic decomposition of formic acid on raw and manganese oxide coated sepiolite surfaces. Appied Clay Science, 62–63, 1–7. DOI: 10.1016/j.clay.2012.04.013. http://dx.doi.org/10.1016/j.clay.2012.04.01310.1016/j.clay.2012.04.013Search in Google Scholar

[7] Eren, E., Gumus, H., Eren, B., & Sarihan, A. (2013). Surface acidity of H-birnessite: Infrared spectroscopic study of formic acid decomposition. Spectroscopy Letters, 46, 60–66. DOI: 10.1080/00387010.2012.666612. http://dx.doi.org/10.1080/00387010.2012.66661210.1080/00387010.2012.666612Search in Google Scholar

[8] Figueiredo, F. C. A., Jordão, E., Landers, R., & Carvalho, W. A. (2009). Acidity control of ruthenium pillared clay and its application as a catalyst in hydrogenation reactions. Applied Catalysis A: General, 371, 131–141. DOI: 10.1016/j.apcata.2009.09.039. http://dx.doi.org/10.1016/j.apcata.2009.09.03910.1016/j.apcata.2009.09.039Search in Google Scholar

[9] Flaherty, D.W., Berglund, S. P., & Mullins, C. B. (2010). Selective decomposition of formic acid on molybdenum carbide: A new reaction pathway. Journal of Catalysis, 269, 33–43. DOI: 10.1016/j.jcat.2009.10.012. http://dx.doi.org/10.1016/j.jcat.2009.10.01210.1016/j.jcat.2009.10.012Search in Google Scholar

[10] Harja, M., Buema, G., Sutiman, D. M., & Cretescu, I. (2013). Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash. Chemical Papers, 67, 497–508. DOI: 10.2478/s11696-012-0303-7. http://dx.doi.org/10.2478/s11696-012-0303-710.2478/s11696-012-0303-7Search in Google Scholar

[11] Hornácek, M., Hudec, P., & Smiešková, A. (2009). Synthesis and characterization of mesoporous molecular sieves. Chemical Papers, 63, 689–697. DOI: 10.2478/s11696-009-0066-y. http://dx.doi.org/10.2478/s11696-009-0066-y10.2478/s11696-009-0066-ySearch in Google Scholar

[12] Isahak, W. N. R. W., Ismail, M., Jahim, J. M., Salimon, J., & Yarmo, M. A. (2012). Characterisation and performance of three promising heterogeneous catalysts in transesterification of palm oil. Chemical Papers, 66, 178–187. DOI: 10.2478/s11696-011-0125-z. http://dx.doi.org/10.2478/s11696-011-0125-z10.2478/s11696-011-0125-zSearch in Google Scholar

[13] Ivanov, E. A., Popova, G. Y., Chesalov, Y. A., & Andrushkevich, T. V. (2009). In situ FTIR study of the kinetics of formic acid decomposition on V-Ti oxide catalyst under stationary and non-stationary conditions. Determination of kinetic constants. Journal of Molecular Catalysis A: Chemical, 312, 92–96. DOI: 10.1016/j.molcata.2009.07.022. http://dx.doi.org/10.1016/j.molcata.2009.07.02210.1016/j.molcata.2009.07.022Search in Google Scholar

[14] Jóna, E., Rudinská, E., Kubranová, M., Sapietová, M., Pajtášová, M., & Jorík, V. (2005). Intercalation of pyridine derivatives and complex formation in the interlayer space of Cu(II)-montmorillonite. Chemical Papers, 59, 248–250. Search in Google Scholar

[15] Jung, S. H., Ahn, J. H., Park, S. K., & Choi, J. K. (2002). A practical and convenient procedure for the N-formylation of amines using formic acid. Bulletin of the Korean Chemical Society, 23, 149–150. DOI: 10.5012/bkcs.2002.23.1.149. http://dx.doi.org/10.5012/bkcs.2002.23.1.14910.5012/bkcs.2002.23.1.149Search in Google Scholar

[16] Karamanis, D., Ökte, A. N., Vardoulakis, E., & Vaimakis, T. (2011). Water vapor adsorption and photocatalytic pollutant degradation with TiO2-sepiolite nanocomposites. Applied Clay Science, 53, 181–187. DOI: 10.1016/j.clay.2010.12.012. http://dx.doi.org/10.1016/j.clay.2010.12.01210.1016/j.clay.2010.12.012Search in Google Scholar

[17] Kim, J. G., & Jang, D. O. (2010). Solvent-free zinc-catalyzed amine N-formylation. Bulletin of the Korean Chemical Society, 31, 2989–2991. DOI: 10.5012/bkcs.2010.31.10.2989. http://dx.doi.org/10.5012/bkcs.2010.31.10.298910.5012/bkcs.2010.31.10.2989Search in Google Scholar

[18] Kobayashi, S., & Nishio, K. (1994). Facile and highly stereoselective synthesis of homoallylic alcohols using organosilicon intermediates. The Journal of Organic Chemistry, 59, 6620–6628. DOI: 10.1021/jo00101a021. http://dx.doi.org/10.1021/jo00101a02110.1021/jo00101a021Search in Google Scholar

[19] Kobayashi, S., Yasuda, M., & Hachiya, I. (1996). Trichlorosilane-dimethylformamide (Cl3SiH-DMF) as an efficient reducing agent. Reduction of aldehydes and imines and reductive amination of aldehydes under mild conditions using hypervalent hydridosilicates. Chemistry Letters, 25, 407–408. DOI: 10.1016/s0040-4039(99)01554-3. http://dx.doi.org/10.1246/cl.1996.40710.1016/S0040-4039(99)01554-3Search in Google Scholar

[20] Krishnakumar, B., & Swaminathan, M. (2011). A convenient method for the N-formylation of amines at room temperature using TiO2-P25 or sulfated titania. Journal of Molecular Catalysis A: Chemical, 334, 98–102. DOI: 10.1016/j.molcata.2010.11.002. http://dx.doi.org/10.1016/j.molcata.2010.11.00210.1016/j.molcata.2010.11.002Search in Google Scholar

[21] Letaief, S., Grant, S., & Detellier, C. (2011). Phenol acetylation under mild conditions catalyzed by gold nanoparticles supported on functional pre-acidified sepiolite. Applied Clay Science, 53, 236–243. DOI: 10.1016/j.clay.2011.01.023. http://dx.doi.org/10.1016/j.clay.2011.01.02310.1016/j.clay.2011.01.023Search in Google Scholar

[22] Long, R. Q., & Yang, R. T. (2000). The promoting role of rare earth oxides on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of nitric oxide by ammonia. Applied Catalysis B: Environmental, 27, 87–95. DOI: 10.1016/s0926-3373(00)00140-5. http://dx.doi.org/10.1016/S0926-3373(00)00140-510.1016/S0926-3373(00)00140-5Search in Google Scholar

[23] Ma’mani, L., Sheykhan, M., Heydari, A., Faraji, M., & Yamini, Y. (2010). Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Bronsted acid for N-formylation of amines. Applied Catalysis A: General, 377, 64–69. DOI: 10.1016/j.apcata.2010.01.020. http://dx.doi.org/10.1016/j.apcata.2010.01.02010.1016/j.apcata.2010.01.020Search in Google Scholar

[24] Miller, K. L., Falconer, J. L., & Medlin, J. W. (2011). Effect of water on the adsorbed structure of formic acid on TiO2 anatase (1 0 1). Journal of Catalysis, 278, 321–328. DOI: 10.1016/j.jcat.2010.12.019. http://dx.doi.org/10.1016/j.jcat.2010.12.01910.1016/j.jcat.2010.12.019Search in Google Scholar

[25] Milt, V. G., Banus, E. D., Miro, E. E., Yates, M., Martin, J. C., Rasmussen, S. B., & Avila, P. (2010). Structured catalysts containing Co, Ba and K supported on modified natural sepiolite for the abatement of diesel exhaust pollutants. Chemical Engineering Journal, 157, 530–538. DOI: 10.1016/j.cej.2009.12.049. http://dx.doi.org/10.1016/j.cej.2009.12.04910.1016/j.cej.2009.12.049Search in Google Scholar

[26] Reddy, P. G., Kumar, G. D. K., & Baskaran, S. (2000). A convenient method for the N-formylation of secondary amines and anilines using ammonium formate. Tetrahedron Letters, 41, 9149–9151. DOI: 10.1016/s0040-4039(00)01636-1. http://dx.doi.org/10.1016/S0040-4039(00)01636-110.1016/S0040-4039(00)01636-1Search in Google Scholar

[27] Reddy, C. R., Nagendrappa, G., & Prakash, B. S. J. (2007). Surface acidity study of Mn+-montmorillonite clay catalysts by FT-IR spectroscopy: Correlation with esterification activity. Catalysis Communications, 8, 241–246. DOI: 10.1016/j.catcom.2006.06.023. http://dx.doi.org/10.1016/j.catcom.2006.06.02310.1016/j.catcom.2006.06.023Search in Google Scholar

[28] Shimizu, K., Maruyama, R., Komai, S., Kodama, T., & Kitayama, Y. (2004). Pd-sepiolite catalyst for Suzuki coupling reaction in water: Structural and catalytic investigations. Journal of Catalysis, 227, 202–209. DOI: 10.1016/j.jcat.2004.07.012. http://dx.doi.org/10.1016/j.jcat.2004.07.01210.1016/j.jcat.2004.07.012Search in Google Scholar

[29] Skoularikis, N. D., Coughlin, R. W., Kostapapas, A., Carrado, K., & Suib, S. L. (1988). Catalytic performance of iron (III) and chromium (III) exchanged pillared clays. Applied Catalysis, 39, 61–76. DOI: 10.1016/s0166-9834(00)80939-2. http://dx.doi.org/10.1016/S0166-9834(00)80939-210.1016/S0166-9834(00)80939-2Search in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A spectrophotometric method for plant pigments determination and herbs classification
  2. Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
  3. Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
  4. Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
  5. Effect of the preparation route on the structure and microstructure of LaCoO3
  6. Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
  7. Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
  8. Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
  9. MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
  10. Carbon nanotube-layered double hydroxide nanocomposites
  11. Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
  12. Reduction of nitroblue tetrazolium to formazan by folic acid
  13. Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
  14. Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
  15. Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
  16. QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
  17. Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
  18. “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity
Downloaded on 14.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0484-8/html?lang=en
Scroll to top button