Startseite Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation

  • František Gago EMAIL logo , Viera Horváthová , Vladimír Ondáš und Ernest Šturdík
Veröffentlicht/Copyright: 15. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The amylose/amylopectin ratio in cereal substrates is one of the parameters affecting starch hydrolysis and fermentation process. Waxy (less than 1 mass % of amylose) starch seems to be suitable for improving the fuel ethanol production. The main aim of this paper was to characterize the fermentation performance of corn and wheat waxy and non-waxy cultivars in terms of simultaneous saccharification and fermentation (SSF) as well as of the separated hydrolysis and fermentation (SHF) type. Two corn (waxy and non-waxy) and two wheat (waxy and non-waxy) cultivars were used for the comparison applying separate enzymatic hydrolysis and fermentation. In the SHF process, the glucose content was higher after saccharification in the waxy corn and wheat compared to that in non-waxy corn and wheat. In the SSF of waxy varieties, the glucose content after the pre-saccharification was also higher than in the non-waxy ones. Although the starch content did not vary significantly, differences in the glucose content after saccharification were observed. The ethanol yield obtained after the distillation of mash varied from 229.2–262.3 L per ton for the SHF fermentation, while it was in the range of 311.5–347.9 L per ton for the SSF process.

[1] AACC International (2012). AACC 32-05.01 Total dietary fiber. In Approved methods of analysis (11th ed.). St. Paul, MN, USA: AACC International. Suche in Google Scholar

[2] AOAC International (1990). AOAC 985.29. Total dietary fiber in foods. Enzymatic — gravimetric method. In Official methods of analysis of the Association of Official Analytical Chemists (15th ed.). Arlington, VA, USA: AOAC International. Suche in Google Scholar

[3] Chandel, A. K., Chan, E. S., Rudravaram, R., Narasu, M. L., Rao, L. V.,& Ravindra, P. (2007). Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnology and Molecular Biology Reviews, 2, 14–32. Suche in Google Scholar

[4] Choi, S. G.,& Kerr, W. L. (2004). Swelling characteristics of native and chemically modified wheat starches as a function of heating temperature and time. Starch — Stärke, 56, 181–189. DOI: 10.1002/star.200300233. http://dx.doi.org/10.1002/star.20030023310.1002/star.200300233Suche in Google Scholar

[5] Chromý, V., Breinek, P.,& Roháček, J. (1987). Some factors influencing the enzymatic determination of glucose on the basis of oxidative copulation. Biochemia Clinica Bohemoslovaca, 16, 275–283. (in Czech) Suche in Google Scholar

[6] Dien, B. S., Bothast, R. J., Iten, L. B., Barrios, L.,& Eckhof, S. R. (2002). Fate of Bt protein and influence of corn hybrid on ethanol production. Cereal Chemistry, 79, 582–585. DOI: 10.1094/cchem.2002.79.4.582. http://dx.doi.org/10.1094/CCHEM.2002.79.4.58210.1094/CCHEM.2002.79.4.582Suche in Google Scholar

[7] Dorta, C., Oliva-Neto, P., de-Abreu-Neto, M. S., Nicolau-Junior, N.,& Nagashima, A. I. (2006). Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26). World Journal of Microbiology and Biotechnology, 22, 177–182. DOI: 10.1007/s11274-005-9016-1. http://dx.doi.org/10.1007/s11274-005-9016-110.1007/s11274-005-9016-1Suche in Google Scholar

[8] Fannon, J. E., Hauber, R. J.,& BeMiller, J. N. (1992). Surface pores of starch granules. Cereal Chemistry, 69, 284–288. Suche in Google Scholar

[9] Fortuna, T., Juszczak, L., Kujawski, M.,& Pałasiński, M. (2000). Porosity of starch granules and their susceptibility to the action of bacterial α-amylase. Zeszyty Naukowe Akademii Rolniczej, 367, 51–64. (in Polish) Suche in Google Scholar

[10] ISO (1997). ISO standard. Native starch — Determination of starch content — Ewers polarimetric method. ISO 10520:1997. Geneva, Switzerland. Suche in Google Scholar

[11] ISO (2006). ISO standard. Cereals and pulses — Determination of the nitrogen content and calculation of the crude protein content — Kjeldahl method. ISO 20483:2006. Geneva, Switzerland. Suche in Google Scholar

[12] ISO (2007a). ISO standard. Rice — Determination of amylose content — Part 1: Reference method. ISO 6647-1:2007. Geneva, Switzerland. Suche in Google Scholar

[13] ISO (2007b). ISO standard. Cereals, pulses and by-products — Determination of ash yield by incineration. ISO 2171:2007. Geneva, Switzerland. Suche in Google Scholar

[14] Jane, J. L., Ao, Z., Duvick, S. A., Wiklund, M., Yoo, S. H., Wong, K. S.,& Gardner, C. (2003). Structures of amylopectin and starch granules: How are they synthesized? Journal of Applied Glycoscience, 50, 167–172. DOI: 10.5458/jag.50.167. http://dx.doi.org/10.5458/jag.50.16710.5458/jag.50.167Suche in Google Scholar

[15] Jacques, K., Lyons, T., & Kelsall, D. (2003). Substrates for ethanol production. In K. Jacques, T. Lyons, & D. Kelsall (Eds.), The alcohol textbook (4th ed., pp. 41–84). Nottingham, UK, Nottingham University Press. Suche in Google Scholar

[16] Latif, F.,& Rajoka, M. I. (2001). Production of ethanol and xylitol from corn cobs by yeasts. Bioresource Technology, 77, 57–63. DOI: 10.1016/s0960-8524(00)00134-6. http://dx.doi.org/10.1016/S0960-8524(00)00134-610.1016/S0960-8524(00)00134-6Suche in Google Scholar

[17] Manners, D. J. (1989). Recent developments in our understanding of amylopectin structure. Carbohydrate Polymers, 11, 87–112. DOI: 10.1016/0144-8617 (89)90018-0. http://dx.doi.org/10.1016/0144-8617(89)90018-010.1016/0144-8617(89)90018-0Suche in Google Scholar

[18] Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. DOI: 10.1021/ac60147a030. http://dx.doi.org/10.1021/ac60147a03010.1021/ac60147a030Suche in Google Scholar

[19] Moorthy, S. N. (2002). Physicochemical and functional properties of tropical tuber starches: A review. Starch — Stärke, 54, 559–592. DOI: 10.1002/1521-379X(200212)54:12〈559::AIDSTAR 2222559〉3.0.CO;2-F. http://dx.doi.org/10.1002/1521-379X(200212)54:12<559::AID-STAR2222559>3.0.CO;2-F10.1002/1521-379X(200212)54:12<559::AID-STAR2222559>3.0.CO;2-FSuche in Google Scholar

[20] Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S.,& Nagamine, T. (1995). Production of waxy (amylose-free) wheats. Molecular and General Genetics, 248, 253–259. DOI: 10.1007/bf02191591. http://dx.doi.org/10.1007/BF0219159110.1007/BF02191591Suche in Google Scholar

[21] O’Connor-Cox, E. S. C., Paik, J.,& Ingledew, W. M. (1991). Improved ethanol yields through supplementation with excess assimilable nitrogen. Journal of Industrial Microbiology and Biotechnology, 8, 45–52. DOI: 10.1007/bf01575590. http://dx.doi.org/10.1007/BF0157559010.1007/BF01575590Suche in Google Scholar

[22] Ophardt, C. E. (2003). Virtual chembook. Elmhurst, IL, USA: Department of Chemistry, Elmhurst College. Retrieved April 28, 2012, from http://www.elmhurst.edu/~chm/vchembook/547starch.html Suche in Google Scholar

[23] Reicks, G., Woodward, H. J.,& Bly, A. (2009). Improving the fermentation characteristics of corn through agronomic and processing practices. Agronomy Journal, 101, 201–206. DOI: 10.2134/agronj2007.0398. http://dx.doi.org/10.2134/agronj2007.039810.2134/agronj2007.0398Suche in Google Scholar

[24] Robyt, J. F. (2001). Polysaccharides: Energy storage. In Encyclopedia of Life Sciences. New York, NY, USA: Wiley. Retrieved March 12, 2012, from http://jdc325.files.wordpress.com/2008/08/polysaccharides-and-energystorage.pdf. DOI: 10.1038/npg.els.0000700. 10.1038/npg.els.0000700Suche in Google Scholar

[25] Roháček, J., Chromý, V.,& Kolářová, J. (1987). Kinetic glucose determination with’ Bio-La-Test Oxochrom GLUKOSA’ testkit. Biochemia Clinica Bohemoslovaca, 16, 183–188. (in Czech) Suche in Google Scholar

[26] Sharma, V., Rausch, K. D., Tumbleson, M. E.,& Singh, V. (2007). Comparison between granular starch hydrolyzing enzyme and conventional enzymes for ethanol production from maize starch with different amylose: amylopectin ratios. Starch — Stärke, 59, 549–556. DOI: 10.1002/star.200700631. http://dx.doi.org/10.1002/star.20070063110.1002/star.200700631Suche in Google Scholar

[27] Thomas, D. J., & Atwell, W. A. (1999). Starches handbook. St. Paul, MN, USA, American Association of Cereal Chemists. http://dx.doi.org/10.1094/189112701210.1094/1891127012Suche in Google Scholar

[28] Thomas, K. C.,& Ingledew, W. M. (1990). Fuel alcohol production: Effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Applied and Environmental Microbiology, 56, 2046–2050. 10.1128/aem.56.7.2046-2050.1990Suche in Google Scholar

[29] Tichý, F. (2001). The growth technology and treatment of wheat and triticale grain for the ethanol production (IAFI Agricultural information, 5/2001). Prague, Czech Republic: Institute of Agricultural and Food Information. (in Czech) Suche in Google Scholar

[30] van der Marel, M. J. E. C, van der Veen, B., Uitdehaag, J. C.M., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94, 137–155. DOI: 10.1016/s0168-1656(01)00407-2. http://dx.doi.org/10.1016/S0168-1656(01)00407-210.1016/S0168-1656(01)00407-2Suche in Google Scholar

[31] Wu, X., Zhao, R., Wang, D., Bean, S. R., Seib, P. A., Tuinstra, M. R., Campbell, M.,& O’Brien, A. (2006a). Effects of amylose, corn protein, and corn fiber contents on production of ethanol from starch-rich media. Cereal Chemistry, 83, 569–575. DOI: 10.1094/cc-83-0569. http://dx.doi.org/10.1094/CC-83-056910.1094/CC-83-0569Suche in Google Scholar

[32] Wu, X., Wang, D., Bean, S. R., & Wilson, J. P. (2006b). Ethanol production from Pearl Millet by using Saccharomyces cerevisiae. Cereal Chemistry, 83, 127–131. DOI: 10.1094/cc-83-0127. http://dx.doi.org/10.1094/CC-83-012710.1094/CC-83-0127Suche in Google Scholar

[33] Zhao, R., Wu, X., Seabourn, B. W., Bean, S. R., Guan, L., Shi, Y. C., Wilson, J. D., Madl, R.,& Wang, D. (2009). Comparison of waxy vs. nonwaxy wheats in fuel ethanol fermentation. Cereal Chemistry, 86, 145–156. DOI: 10.1094/cchem-86-2-0145. http://dx.doi.org/10.1094/CCHEM-86-2-014510.1094/CCHEM-86-2-0145Suche in Google Scholar

Published Online: 2013-11-15
Published in Print: 2014-3-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Analytical protocol for investigation of zinc speciation in plant tissue
  2. Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
  3. Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
  4. Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
  5. Determination of limiting current density for different electrodialysis modules
  6. Dyeing of multiple types of fabrics with a single reactive azo disperse dye
  7. Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
  8. Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
  9. Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
  10. Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
  11. Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
  12. Total synthesis of cannabisin F
  13. Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
  14. Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
  15. DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
  16. Efficient thioacetalisation of carbonyl compounds
  17. Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0454-1/pdf?lang=de
Button zum nach oben scrollen