Home Determination of limiting current density for different electrodialysis modules
Article
Licensed
Unlicensed Requires Authentication

Determination of limiting current density for different electrodialysis modules

  • Natália Káňavová EMAIL logo , Lubomír Machuča and David Tvrzník
Published/Copyright: November 15, 2013
Become an author with De Gruyter Brill

Abstract

Limiting current density of ammonium nitrate solution in laboratory-, pilot-, and industrial-scale electrodialysis modules were determined to provide a method for the prediction of the limiting current density of ammonium nitrate solutions at any conditions. The current-voltage curve was measured in each case and the limiting current density was evaluated using the dependence of the derivative, dI/dU, on the electric current, I. The limiting current was determined as a current at which the derivative dI/dU equals zero. The developed method enables not only the prediction of the limiting current density but the limiting cut and limiting flux can be determined concurrently at any linear flow velocity of the diluate and inlet ammonium nitrate concentration. It could help to prevent working in the overlimiting region and to avoid undesirable decrease of current efficiency and pH changes. The limiting cut is the maximal cut that can be obtained at certain linear flow velocity and module geometry irrespective of the inlet ammonium nitrate concentration and it is very useful information when designing a new electrodialysis unit for specific application.

[1] Barragán, V. M., & Ruíz-Bauzá, C. (1998). Current-voltage curves for ion-exchange membranes: A method for determining the limiting current density. Journal of Colloid and Interface Science, 205, 365–373. DOI: 10.1006/jcis.1998.5649. http://dx.doi.org/10.1006/jcis.1998.564910.1006/jcis.1998.5649Search in Google Scholar

[2] Davis, T. A., Grebenyuk, V., & Grebenyuk, O. (2001). Electromembrane processes. In S. Pereira Nunes, & K. V. Peinemann (Eds.), Membrane technology: in the chemical industry (pp. 222–267). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/3527600388.ch12. http://dx.doi.org/10.1002/3527600388.ch1210.1002/3527600388.ch12Search in Google Scholar

[3] Gonçalves, F., Fernandes, C., Cameira dos Santos, P., & de Pinho, M. N. (2003). Wine tartaric stabilization by electrodialysis and its assessment by the saturation temperature. Journal of Food Engineering, 59, 229–235. DOI: 10.1016/s0260-8774(02)00462-4. http://dx.doi.org/10.1016/S0260-8774(02)00462-410.1016/S0260-8774(02)00462-4Search in Google Scholar

[4] Jaime Ferrer, J. S., Laborie, S., Durand, G., & Rakib, M. (2006). Formic acid regeneration by electromembrane processes. Journal of Membrane Science, 280, 509–516. DOI: 10.1016/j.memsci.2006.02.012. http://dx.doi.org/10.1016/j.memsci.2006.02.01210.1016/j.memsci.2006.02.012Search in Google Scholar

[5] Kaláb, J., & Palaty, Z. (2012). Electrodialysis of oxalic acid: batch process modeling. Chemical Papers, 66, 1118–1123. DOI: 10.2478/s11696-012-0232-5. http://dx.doi.org/10.2478/s11696-012-0232-510.2478/s11696-012-0232-5Search in Google Scholar

[6] Kinčl, J., Bobák, M., Diblíková, L., & Čurda, L. (2012). Characteristics of demineralization of salty whey. In Book of Abstracts of ELMEMPRO 2012, August 26–29, 2012 (pp. 62–63). Česk’y Krumlov, Czech Republic. Search in Google Scholar

[7] Krol, J. J., Wessling, M., & Strathmann, H. (1999). Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation. Journal of Membrane Science, 162, 145–154. DOI: 10.1016/s0376-7388(99)00133-7. http://dx.doi.org/10.1016/S0376-7388(99)00133-710.1016/S0376-7388(99)00133-7Search in Google Scholar

[8] Lee, H. J., Strathmann, H., & Moon, S. H. (2006). Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity. Desalination, 190, 43–50. DOI: 10.1016/j.desal.2005.08.004. http://dx.doi.org/10.1016/j.desal.2005.08.00410.1016/j.desal.2005.08.004Search in Google Scholar

[9] Machuča, L., Tvrzník, D., & Kysela, V. (2012). Conception of electromembrane processes for reuse of waste water containing ammonium nitrate. Waste Forum, 4, 222–228. (in Czech) Search in Google Scholar

[10] Marek, J. (2012). Zkušenosti z úpravy vody pomocí membránovych technologií. Energie kolem nás, 2012(4), 22–24. Search in Google Scholar

[11] Meng, H., Deng, D. Y., Chen, S. J., & Zhang, G. J. (2005). A new method to determine the optimal operating current (I lim’) in the electrodialysis process. Desalination, 181, 101–108. DOI: 10.1016/j.desal.2005.01.014. http://dx.doi.org/10.1016/j.desal.2005.01.01410.1016/j.desal.2005.01.014Search in Google Scholar

[12] Mulder, M. (1996). Basic principles of membrane technology. Dordrecht, The Netherlands: Kluwer Academic Publishers. http://dx.doi.org/10.1007/978-94-009-1766-810.1007/978-94-009-1766-8Search in Google Scholar

[13] Nikonenko, V. V., Pismenskaya, N. D., Istoshin, A. G., Zabolotsky, V. I., & Shudrenko, A. A. (2008). Description of mass transfer characteristics of ED and EDI apparatuses by using the similarity theory and compartmentation method. Chemical Engineering and Processing: Process Intensification, 47, 1118–1127. DOI: 10.1016/j.cep.2007.12.005. http://dx.doi.org/10.1016/j.cep.2007.12.00510.1016/j.cep.2007.12.005Search in Google Scholar

[14] Ponce-de-León, C., & Field, R. W. (2000). On the determination of limiting current density from uncertain data. Journal of Applied Electrochemistry, 30, 1087–1090. DOI: 10.1023/a:1004015617522. http://dx.doi.org/10.1023/A:100401561752210.1023/A:1004015617522Search in Google Scholar

[15] Ponce-de-León, C., Low, C. T. J., Kear, G., & Walsh, F. C. (2007). Strategies for the determination of the convectivediffusion limiting current from steady state linear sweep voltammetry. Journal of Applied Electrochemistry, 37, 1261–1270. DOI: 10.1007/s10800-007-9392-3. http://dx.doi.org/10.1007/s10800-007-9392-310.1007/s10800-007-9392-3Search in Google Scholar

[16] Rapp, H. J., & Pfromm, P. H. (1998). Electrodialysis for chloride removal from the chemical recovery cycle of a Kraft pulp mill. Journal of Membrane Science, 146, 249–261. DOI: 10.1016/s0376-7388(98)00122-7. http://dx.doi.org/10.1016/S0376-7388(98)00122-710.1016/S0376-7388(98)00122-7Search in Google Scholar

[17] Strathmann, H. (1991). Electrodialysis. In R. W. Baker (Ed.), Membrane separation systems (pp. 396–448). Park Ridge, NJ, USA: Noyes Data Corporation. Search in Google Scholar

[18] Šímová, H., Kysela, V., & Černín, A. (2010). Demineralization of natural sweet whey by electrodialysis at pilot-plant scale. Desalination and Water Treatment, 14, 170–173. DOI: 10.5004/dwt.2010.1023. http://dx.doi.org/10.5004/dwt.2010.102310.5004/dwt.2010.1023Search in Google Scholar

[19] Valerdi-Pérez, R., & Ibáñez-Mengual, J. A. (2001). Current—voltage curves for an electrodialysis reversal pilot plant: determination of limiting currents. Desalination, 141, 23–37. DOI: 10.1016/s0011-9164(01)00386-1. http://dx.doi.org/10.1016/S0011-9164(01)00386-110.1016/S0011-9164(01)00386-1Search in Google Scholar

[20] Vera, E., Ruales, J., Dornier, M., Sandeaux, J., Sandeaux, R., & Pourcelly, G. (2003). Deacidification of clarified passion fruit juice using different configurations of electrodialysis. Journal of Chemical Technology and Biotechnology, 78, 918–925. DOI: 10.1002/jctb.827. http://dx.doi.org/10.1002/jctb.82710.1002/jctb.827Search in Google Scholar

Published Online: 2013-11-15
Published in Print: 2014-3-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Analytical protocol for investigation of zinc speciation in plant tissue
  2. Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
  3. Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
  4. Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
  5. Determination of limiting current density for different electrodialysis modules
  6. Dyeing of multiple types of fabrics with a single reactive azo disperse dye
  7. Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
  8. Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
  9. Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
  10. Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
  11. Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
  12. Total synthesis of cannabisin F
  13. Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
  14. Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
  15. DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
  16. Efficient thioacetalisation of carbonyl compounds
  17. Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0456-z/html
Scroll to top button