Startseite Analytical protocol for investigation of zinc speciation in plant tissue
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analytical protocol for investigation of zinc speciation in plant tissue

  • Jakub Karasiński EMAIL logo , Wanda Cegiełkowska , Marcin Wojciechowski , Małgorzata Wierzbicka und Ewa Bulska
Veröffentlicht/Copyright: 15. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A specific procedure is proposed for investigating the chemical speciation of zinc (Zn) in plant tissues, viz., the extraction of Zn compounds from Plantago lanceolata L. followed by the chromatographic separation and inductively coupled plasma mass spectrometry (ICP-MS) identification of these compounds. In order to separate the Zn compounds, both size-exclusion (SEC) and ionexchange liquid chromatography (IC) were used in direct sequential and reverse sequential modes. In the direct sequential mode, the entire extract undergoes SEC separation and then the individual fractions are injected onto the ion-exchange column. The molecular size distribution is evaluated by SEC coupled on-line to the UV detector. In the reverse sequential mode, the entire extract undergoes the ion-exchange chromatographic separation and then the individual fractions are injected onto the size-exclusion column. The identification of Zn incorporated into the compounds is further performed using ICP-MS. This procedure is particularly useful in speciation studies when identification of the individual components of the element is problematic due to the lack of suitable standard substances, as is the case for Zn compounds. The proposed procedure facilitates assignment of the signals to the individual components of the fractions for both types of chromatography, thus rendering the chemical speciation of Zn possible when the lack of suitable standard substances impedes the identification of individual components.

[1] Alloway, B. J. (2008). Zinc in soils and crop nutrition (2nd ed.). Brussels, Belgium/Paris, France: IZA/IFA. Suche in Google Scholar

[2] Baranowska-Morek, A. (2003). Roślinne mechanizmy tolerancji na działanie metali ciężkich. Kosmos: Problemy Nauk Biologicznych, 52, 283–298. (in Polish) Suche in Google Scholar

[3] Bulska, E., Wysocka, I. A., Wierzbicka, M. H., Proost, K., Janssens, K., & Falkenberg, G. (2006). In vivo investigation of the distribution and the local speciation of selenium in Allium cepa L. by means of microscopic X-ray absorption nearedge structure spectroscopy and confocal microscopic X-ray fluorescence analysis. Analytical Chemistry, 78, 7616–7624. DOI: 10.1021/ac060380s. http://dx.doi.org/10.1021/ac060380s10.1021/ac060380sSuche in Google Scholar

[4] Chang, S. H., Wei, Y. L., & Wang, H. P. (2007). Zinc species distribution in EDTA-extract residues of zinc-contaminated soil. Journal of Electron Spectroscopy and Related Phenomena, 156–158, 220–223. DOI: 10.1016/j.elspec.2006.12.008. http://dx.doi.org/10.1016/j.elspec.2006.12.00810.1016/j.elspec.2006.12.008Suche in Google Scholar

[5] Chardonnens, A. N., Ten Bookum, W. M., Vellinga, S., Schat, H., Verkleij, J. A. C., & Ernst, W. H. O. (1999). Allocation patterns of zinc and cadmium in heavy metal tolerant and sensitive Silene vulgaris. Journal of Plant Physiology, 155, 778–787. DOI: 10.1016/s0176-1617(99)80096-0. http://dx.doi.org/10.1016/S0176-1617(99)80096-010.1016/S0176-1617(99)80096-0Suche in Google Scholar

[6] Chen, R., Smith, B.W., Winefordner, J. D., Tu, M. S., Kertulis, G., & Ma, L. Q. (2004). Arsenic speciation in Chinese brake fern by ion-pair high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 504, 199–207. DOI: 10.1016/j.aca.2003.10.042. http://dx.doi.org/10.1016/j.aca.2003.10.04210.1016/j.aca.2003.10.042Suche in Google Scholar

[7] Harmens, H., Gusmǎo, N. G. C. P. B., Den Hartog, P. R., Verkleij, A. J. A. C., & Ernst, W. H. O. (1993). Uptake and transport of zinc in zinc-sensitive and zinc tolerant Silene vulgaris. Journal of Plant Physiology, 141, 309–315. DOI: 10.1016/s0176-1617(11)81740-2. http://dx.doi.org/10.1016/S0176-1617(11)81740-210.1016/S0176-1617(11)81740-2Suche in Google Scholar

[8] Ponce de León, C. A., Montes-Bayón, M., & Caruso, J. A. (2002), Elemental speciation by chromatographic separation with inductively coupled plasma mass spectrometry detection. Journal of Chromatography A, 974, 1–21. DOI: 10.1016/s0021-9673(02)01239-6. http://dx.doi.org/10.1016/S0021-9673(02)01239-610.1016/S0021-9673(02)01239-6Suche in Google Scholar

[9] Sarret, G., Willems, G., Isaure, M. P., Marcus, M. A., Fakra, S. C., Frérot, H., Pairis, S., Geoffroy, N., Manceau, A., & Saumitou-Laprade, P. (2009). Zinc distribution and speciation in Arabidopsis halleri × Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytologist, 184, 581–595. DOI: 10.1111/j.1469-8137.2009.02996.x. http://dx.doi.org/10.1111/j.1469-8137.2009.02996.x10.1111/j.1469-8137.2009.02996.xSuche in Google Scholar PubMed

[10] Straczek, A., Sarret, G., Manceau, A., Hinsinger, P., Geoffroy, N., & Jaillard, B. (2008). Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn. Environmental and Experimental Botany, 63, 80–90. DOI: 10.1016/j.envexpbot.2007.10.034. http://dx.doi.org/10.1016/j.envexpbot.2007.10.03410.1016/j.envexpbot.2007.10.034Suche in Google Scholar

[11] Szpunar, J., & Lobinski, R. (1999). Species-selective analysis for metal-biomacromolecular complexes using hyphenated techniques. Pure and Applied Chemistry, 71, 899–918. DOI: 10.1351/pac199971050899. http://dx.doi.org/10.1351/pac19997105089910.1351/pac199971050899Suche in Google Scholar

[12] Szpunar, J., Pellerin, P., Makarov, A., Doco, T., Williams, P., & Łobiński, R. (1999). Speciation of metal-carbohydrate complexes in fruit and vegetable samples by size-exclusion HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 14, 639–644. DOI: 10.1039/a808231f. http://dx.doi.org/10.1039/a808231f10.1039/A808231FSuche in Google Scholar

[13] Vulkan, R., Mingelgrin, U., Ben-Asher, J., & Frenkel, H. (2002). Copper and zinc speciation in the solution of a soil-sludge mixture. Journal of Environmental Quality, 31, 193–203. DOI: 10.2134/jeq2002.0193. http://dx.doi.org/10.2134/jeq2002.019310.2134/jeq2002.0193Suche in Google Scholar

[14] Wierzbicka, M., Szarek-Łukaszewska, G., & Grodzińska, K. (2004). Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicology and Environmental Safety, 59, 84–88. DOI: 10.1016/j.ecoenv.2003.12.009. http://dx.doi.org/10.1016/j.ecoenv.2003.12.00910.1016/j.ecoenv.2003.12.009Suche in Google Scholar PubMed

[15] Wrobel, K., Wrobel, K., Kannamkumarath, S. S., Caruso, J. A., Wysocka, I. A., Bulska, E., Swiatek, J., & Wierzbicka, M. (2004). HPLC-ICP-MS speciation of selenium in enriched onion leaves — a potencial dietary sources of Semethyloselenocysteine. Food Chemistry, 86, 617–623. DOI: 10.1016/j.foodchem.2003.11.005. http://dx.doi.org/10.1016/j.foodchem.2003.11.00510.1016/j.foodchem.2003.11.005Suche in Google Scholar

[16] Wuilloud, R. G., Kannamkumarath, S. S., & Caruso, J. A. (2004). Speciation of nickel, copper, zinc, and manganese in different edible nuts: a comparative study of molecular size distribution by SEC-UV-ICP-MS. Analytical and Bioanalytical Chemistry, 379, 495–503. DOI: 10.1007/s00216-004-2592-3. http://dx.doi.org/10.1007/s00216-004-2592-310.1007/s00216-004-2592-3Suche in Google Scholar PubMed

[17] Zhao, F. J., Lombi, E., Breedon, T., & McGrath, S. P. (2000). Zn hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell and Environment, 23, 507–514. DOI: 10.1046/j.1365-3040.2000.00569.x. http://dx.doi.org/10.1046/j.1365-3040.2000.00569.x10.1046/j.1365-3040.2000.00569.xSuche in Google Scholar

Published Online: 2013-11-15
Published in Print: 2014-3-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Analytical protocol for investigation of zinc speciation in plant tissue
  2. Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
  3. Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
  4. Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
  5. Determination of limiting current density for different electrodialysis modules
  6. Dyeing of multiple types of fabrics with a single reactive azo disperse dye
  7. Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
  8. Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
  9. Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
  10. Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
  11. Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
  12. Total synthesis of cannabisin F
  13. Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
  14. Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
  15. DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
  16. Efficient thioacetalisation of carbonyl compounds
  17. Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0460-3/html
Button zum nach oben scrollen