Home Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
Article
Licensed
Unlicensed Requires Authentication

Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound

  • Ana Simonović EMAIL logo , Marija Petrović , Milan Radovanović , Snežana Milić and Milan Antonijević
Published/Copyright: November 15, 2013
Become an author with De Gruyter Brill

Abstract

This investigation aimed to study a “green” non-toxic biodegradable copper corrosion inhibitor in an acidic sodium sulphate solution. The methods used in the investigation of cysteine as a copper corrosion inhibitor in an acidic sodium sulphate solution were: potentiodynamic measurements, open circuit potential measurements, and chronoamperometric measurements. Optical microscopy was used in addition to electrochemical methods. Potentiodynamic measurements show that cysteine has good inhibitory properties in an acidic medium. Polarisation curves indicate that the presence of cysteine in a sulphate solution decreases the current density and that using various cysteine concentrations results in the formation of a protective film on the surface of the electrode due to the formation of the Cu(I)-cys complex. These results are confirmed by chronoamperometric measurements. Furthermore, it is clear from microphotographs that a protective film does form on copper electrode in the presence of cysteine. The Langmuir adsorption isotherm indicates that cysteine is chemisorbed on the surface of the electrode.

[1] Antonijević, M. M., Milić, S. M., Šerbula, S. M., & Bogdanović, G. D. (2005). The influence of chloride ions and benzotriazole on the corrosion behavior of Cu37Zn brass in alkaline medium. Electrochimica Acta, 50, 3693–3701. DOI: 10.1016/j.electacta.2005.01.023. http://dx.doi.org/10.1016/j.electacta.2005.01.02310.1016/j.electacta.2005.01.023Search in Google Scholar

[2] Antonijevic, M. M., Bogdanovic, G. D., Radovanovic, M. B., Petrovic, M. B., & Stamenkovic, A. T. (2009a). Influence of pH and chloride ions on electrochemical behaviour of brass in alkaline solution. International Journal of Electrochemical Science, 4, 654–661. Search in Google Scholar

[3] Antonijevic, M. M., Milic, S. M., Dimitrijevic, M. D., Petrovic, M. B., Radovanovic, M. B., & Stamenkovic, A. T. (2009b). The influence of pH and chlorides on electrochemical behavior of copper in the presence of benzotriazole. International Journal of Electrochemical Science, 4, 962–979. Search in Google Scholar

[4] Antonijevic, M. M., Milic, S. M., Radovanovic, M. B., Petrovic, M. B., & Stamenkovic, A. T. (2009c). Influence of pH and chlorides on electrochemical behaviour of brass in presence of benzotriazole. International Journal of Electrochemical Science, 4, 1719–1734. Search in Google Scholar

[5] Badawy, W. A., Ismail, K. M., & Fathi, A. M. (2006). Corrosion control of Cu-Ni alloys in neutral chloride solutions by amino acids. Electrochimica Acta, 51, 4182–4189. DOI: 10.1016/j.electacta.2005.11.037. http://dx.doi.org/10.1016/j.electacta.2005.11.03710.1016/j.electacta.2005.11.037Search in Google Scholar

[6] Benali, O., Larabi, L., & Harek, Y. (2010). Inhibiting effects of 2-mercapto-1-methylimidazole on copper corrosion in 0.5 M sulphuric acid. Journal of Saudi Chemical Society, 14, 231–235. DOI: 10.1016/j.jscs.2010.02.020. http://dx.doi.org/10.1016/j.jscs.2010.02.02010.1016/j.jscs.2010.02.020Search in Google Scholar

[7] Duthil, J. P., Mankowski, G., & Giusti, A. (1996). The synergetic effect of chloride and sulphate on pitting corrosion of copper. Corrosion Science, 38, 1839–1849. DOI: 10.1016/s0010-938x(96)88250-3. http://dx.doi.org/10.1016/S0010-938X(96)88250-310.1016/S0010-938X(96)88250-3Search in Google Scholar

[8] ElBakri, M., Touir, R., Ebn Touhami, M., Srhiri, A., & Benmessaoud, M. (2008). Electrosynthesis of adherent poly(3-amino-1,2,4-triazole) films on brass prepared in nonaqueous solvents. Corrosion Science, 50, 1538–1545. DOI: 10.1016/j.corsci.2008.02.014. http://dx.doi.org/10.1016/j.corsci.2008.02.01410.1016/j.corsci.2008.02.014Search in Google Scholar

[9] El-Naggar, M. M. (2000). Bis-triazole as a new corrosion inhibitor for copper in sulfate solution. A model for synergistic inhibition action. Journal of Materials Science, 35, 6189–6195. DOI: 10.1023/a:1026725110344. 10.1023/A:1026725110344Search in Google Scholar

[10] El-Shafei, A. A., Moussa, M. N. H., & El-Far, A. A. (1997). Inhibitory effect of amino acids on Al pitting corrosion in 0.1 MNaCl. Journal of Applied Electrochemistry, 27, 1075–1078. DOI: 10.1023/a:1018490727290. http://dx.doi.org/10.1023/A:101849072729010.1023/A:1018490727290Search in Google Scholar

[11] Frignani, A., Tommesani, L., Brunoro, G., Monticelli, C., & Fogagnolo, M. (1999a). Influence of the alkyl chain on the protective effects of 1,2,3-benzotriazole towards copper corrosion. Part I: inhibition of the anodic and cathodic reactions. Corrosion Science, 41, 1205–1215. DOI: 10.1016/s0010-938x(98)00191-7. http://dx.doi.org/10.1016/S0010-938X(98)00191-710.1016/S0010-938X(98)00191-7Search in Google Scholar

[12] Frignani, A., Fonsati, M., Monticelli, C., & Brunoro, G. (1999b). Influence of the alkyl chain on the protective effects of 1,2,3-benzotriazole towards copper corrosion. Part II: formation and characterization of the protective films. Corrosion Science, 41, 1217–1227. DOI: 10.1016/s0010-938x(98)00192-9. http://dx.doi.org/10.1016/S0010-938X(98)00192-910.1016/S0010-938X(98)00192-9Search in Google Scholar

[13] Gomma, G. K., & Wahdan, M. H. (1994). Effect of temperature on the acidic dissolution of copper in the presence of amino acids. Materials Chemistry and Physics, 39, 142–148. DOI: 10.1016/0254-0584(94)90191-0. http://dx.doi.org/10.1016/0254-0584(94)90191-010.1016/0254-0584(94)90191-0Search in Google Scholar

[14] Gomma, G. K. (1998). Effect of azole compounds on corrosion of copper in acid medium. Materials Chemistry and Physics, 56, 27–34. DOI: 10.1016/s0254-0584(98)00086-8. http://dx.doi.org/10.1016/S0254-0584(98)00086-810.1016/S0254-0584(98)00086-8Search in Google Scholar

[15] Hamed, E. (2010). Studies of the corrosion inhibition of copper in Na2SO4 solution using polarization and electrochemical impedance spectroscopy. Materials Chemistry and Physics, 121, 70–76. DOI: 10.1016/j.matchemphys.2009.12.044. http://dx.doi.org/10.1016/j.matchemphys.2009.12.04410.1016/j.matchemphys.2009.12.044Search in Google Scholar

[16] El Issami, S., Bazzi, L., Mihit, M., Hammouti, B., Kerit, S., Addi, E. A., & Salghi, R. (2007). Triazolic compounds as corrosion inhibitors for copper in hydrochloric acid. Pigment & Resin Technology, 36, 161–168. DOI: 10.1108/03699420710749027. http://dx.doi.org/10.1108/0369942071074902710.1108/03699420710749027Search in Google Scholar

[17] Khaled, K. F. (2008). Adsorption and inhibitive properties of a new synthesized guanidine derivative on corrosion of copper in 0.5 M H2SO4. Applied Surface Science, 255, 1811–1818. DOI: 10.1016/j.apsusc.2008.06.030. http://dx.doi.org/10.1016/j.apsusc.2008.06.03010.1016/j.apsusc.2008.06.030Search in Google Scholar

[18] Larabi, L., Benali, O., Mekelleche, S. M., & Harek, Y. (2006). 2-mercapto-1-methylimidazole as corrosion inhibitor for copper in hydrochloric acid. Applied Surface Science, 253, 1371–1378. DOI: 10.1016/j.apsusc.2006.02.013. http://dx.doi.org/10.1016/j.apsusc.2006.02.01310.1016/j.apsusc.2006.02.013Search in Google Scholar

[19] Mabille, I., Bertrand, A,. Sutter, E. M. M., & Fiaud, C. (2003). Machanism of dissolution of a Cu-13Sn alloy in low aggressive conditions. Corrosion Science, 45, 855–866. DOI: 10.1016/s0010-938x(02)00207-x. http://dx.doi.org/10.1016/S0010-938X(02)00207-X10.1016/S0010-938X(02)00207-XSearch in Google Scholar

[20] Matos, J. B., Pereira, L. P., Agostinho, S. M. L., Barcia, O. E., Cordeiro, G. G. O., & D’Elia, E. (2004). Effect of cysteine on the anodic dissolution of copper in sulfuric acid medium. Journal of Electroanalytical Chemistry, 570, 91–94. DOI: 10.1016/j.jelechem.2004.03.020. http://dx.doi.org/10.1016/j.jelechem.2004.03.02010.1016/j.jelechem.2004.03.020Search in Google Scholar

[21] Milić, S. M., & Antonijević, M. M. (2009). Some aspects of copper corrosion in presence of benzotriazole and chloride ions. Corrosion Science, 51, 28–34. DOI: 10.1016/j.corsci.2008.10.007. http://dx.doi.org/10.1016/j.corsci.2008.10.00710.1016/j.corsci.2008.10.007Search in Google Scholar

[22] Milošev, I., Mikić, T. K., & Gaberšček, M. (2006). The effect of Cu-rich sub-layer on the increased corrosion resistance of Cu-xZn alloys in chloride containing borate buffer. Electrochimica Acta, 52, 415–426. DOI: 10.1016/j.electacta.2006.05.024. http://dx.doi.org/10.1016/j.electacta.2006.05.02410.1016/j.electacta.2006.05.024Search in Google Scholar

[23] Morad, M. S. S., Hermas, A. E. H. A., & Aal, M. S. A. (2002). Effect of amino acids containing sulfur on the corrosion of mild steel in phosphoric acid solutions polluted with Cl−, F− and Fe3+ ions-behaviour near and at the corrosion potential. Journal of Chemical Technology and Biotechnolgy, 77, 486–494. DOI: 10.1002/jctb.588. http://dx.doi.org/10.1002/jctb.58810.1002/jctb.588Search in Google Scholar

[24] Moretti, G., & Guidi, F. (2002). Tryptophan as copper corrosion inhibitor in 0.5 M aerated sulfuric acid. Corrosion Science, 44, 1995–2011. DOI: 10.1016/s0010-938x(02)00020-3. http://dx.doi.org/10.1016/S0010-938X(02)00020-310.1016/S0010-938X(02)00020-3Search in Google Scholar

[25] Petrović, M. B., Simonović, A. T., Radovanović, M. B., Milić, S. M., & Antonijević, M. M. (2012a). Influence of purine on copper behavior in neutral and alkaline sulfate solutions. Chemical Papers, 66, 664–676. DOI: 10.2478/s11696-012-0174-y. http://dx.doi.org/10.2478/s11696-012-0174-y10.2478/s11696-012-0174-ySearch in Google Scholar

[26] Petrović, M. B., Radovanović, M. B., Simonović, A. T., Milić, S. M., & Antonijević, M. M. (2012b). The effect of cysteine on the behaviour of copper in neutral and alkaline sulphate solutions. International Journal of Electrochemical Science, 7, 9043–9057. 10.2478/s11696-012-0174-ySearch in Google Scholar

[27] Radovanović, M. B., Petrović, M. B., Simonović, A. T., Milić, S. M., & Antonijević, M. M. (2013). Cysteine as a green corrosion inhibitor for Cu37Zn brass in neutral and weakly alkaline sulphate solutions. Environmental Science and Pollution Research, 20, 4370–4381. DOI: 10.1007/s11356-012-1088-5. http://dx.doi.org/10.1007/s11356-012-1088-510.1007/s11356-012-1088-5Search in Google Scholar PubMed

[28] Saifi, H., Bernard, M. C., Joiret, S., Rahmouni, K., Takenouti, H., & Talhi, B. (2010). Corrosion inhibitive action of cysteine on Cu-30Ni alloy in aerated 0.5 M H2SO4. Materials Chemistry and Physics, 120, 661–669. DOI: 10.1016/j.matchemphys.2009.12.011. http://dx.doi.org/10.1016/j.matchemphys.2009.12.01110.1016/j.matchemphys.2009.12.011Search in Google Scholar

[29] Scendo, M. (2007a). Inhibitive action of the purine and adenine for copper corrosion in sulphate solutions. Corrosion Science, 49, 2985–3000. DOI: 10.1016/j.corsci.2007.01.002. http://dx.doi.org/10.1016/j.corsci.2007.01.00210.1016/j.corsci.2007.01.002Search in Google Scholar

[30] Scendo, M. (2007b). The effect of purine on the corrosion of copper in chloride solutions. Corrosion Science, 49, 373–390. DOI: 10.1016/j.corsci.2006.06.022. http://dx.doi.org/10.1016/j.corsci.2006.06.02210.1016/j.corsci.2006.06.022Search in Google Scholar

[31] Scendo, M. (2007c). Corrosion inhibition of copper by purine or adenine in sulphate solutions. Corrosion Science, 49, 3953–3968. DOI: 10.1016/j.corsci.2007.03.037. http://dx.doi.org/10.1016/j.corsci.2007.03.03710.1016/j.corsci.2007.03.037Search in Google Scholar

[32] Scendo, M. (2008). Inhibition of copper corrosion in sodium nitrate solutions with nontoxic inhibitors. Corrosion Science, 50, 1584–1592. DOI: 10.1016/j.corsci.2008.02.015. http://dx.doi.org/10.1016/j.corsci.2008.02.01510.1016/j.corsci.2008.02.015Search in Google Scholar

[33] Sherif, E. S. M., Erasmus, R. M., & Comins, J. D. (2007). Corrosion of copper in aerated acidic pickling solutions and its inhibition by 3-amino-1,2,4-triazole-5-thiol. Journal of Colloid and Interface Science, 306(1), 96–104. DOI: 10.1016/j.jcis.2006.10.029. http://dx.doi.org/10.1016/j.jcis.2006.10.02910.1016/j.jcis.2006.10.029Search in Google Scholar PubMed

[34] Souissi, N., & Triki, E. (2008). Modelling of phosphate inhibition of copper corrosion in aqueous chloride and sulphate media. Corrosion Science, 50, 231–241. DOI: 10.1016/j.corsci.2007.06.022. http://dx.doi.org/10.1016/j.corsci.2007.06.02210.1016/j.corsci.2007.06.022Search in Google Scholar

[35] Stupnišek-Lisac, E., Gazivoda, A., & Madžarac, G. (2002). Evaluation of non-toxic corrosion inhibitors for copper in sulphuric acid. Electrochimica Acta, 47, 4189–4194. DOI: 10.1016/s0013-4686(02)00436-x. http://dx.doi.org/10.1016/S0013-4686(02)00436-X10.1016/S0013-4686(02)00436-XSearch in Google Scholar

[36] Szöcs, E., Vastag, G., Shaban, A., & Kálmán, E. (2005). Electrochemical behaviour of an inhibitor film formed on copper surface. Corrosion Science, 47, 893–908. DOI: 10.1016/j.corsci.2004.06.029. http://dx.doi.org/10.1016/j.corsci.2004.06.02910.1016/j.corsci.2004.06.029Search in Google Scholar

[37] Villamil, R. F. V., Corio, P., Agostinho, S. M. L., & Rubim, J. C. (1999). Effect of sodium dodecylsulfate on copper corrosion in sulfuric acid media in the absence and presence of benzotriazole. Journal of Electroanalytical Chemistry, 472, 112–119. DOI: 10.1016/s0022-0728(99)00267-3. http://dx.doi.org/10.1016/S0022-0728(99)00267-310.1016/S0022-0728(99)00267-3Search in Google Scholar

[38] Ye, X. R., Xin, X. Q., Zhu, J. J., & Xuľ, Z. L. (1998). Coordinate compound films of 1-phenyl-5-mercaptotetrazole on copper surface. Applied Surface Science, 135, 307–317. DOI: 10.1016/s0169-4332(98)00301-8. http://dx.doi.org/10.1016/S0169-4332(98)00301-810.1016/S0169-4332(98)00301-8Search in Google Scholar

[39] Zhang, D. Q., Cai, Q. R., Gao, L. X., & Lee, K. Y. (2008). Effect of serine, threonine and glutamic acid on the corrosion of copper in aerated hydrochloric acid solution. Corrosion Science, 50, 3615–3621. DOI: 10.1016/j.corsci.2008.09.007. http://dx.doi.org/10.1016/j.corsci.2008.09.00710.1016/j.corsci.2008.09.007Search in Google Scholar

[40] Zucchi, F., Trabanelli, G., & Fonsati, M. (1996). Tetrazole derivatives as corrosion inhibitors for copper in chloride solutions. Corrosion Science, 38, 2019–2029. DOI: 10.1016/s0010-938x(96)00094-7. http://dx.doi.org/10.1016/S0010-938X(96)00094-710.1016/S0010-938X(96)00094-7Search in Google Scholar

Published Online: 2013-11-15
Published in Print: 2014-3-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Analytical protocol for investigation of zinc speciation in plant tissue
  2. Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
  3. Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
  4. Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
  5. Determination of limiting current density for different electrodialysis modules
  6. Dyeing of multiple types of fabrics with a single reactive azo disperse dye
  7. Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
  8. Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
  9. Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
  10. Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
  11. Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
  12. Total synthesis of cannabisin F
  13. Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
  14. Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
  15. DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
  16. Efficient thioacetalisation of carbonyl compounds
  17. Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0458-x/html
Scroll to top button