Abstract
A novel and convenient synthesis of thiopheno-4-thiazolidinyl indole analogues is presented (IVa-IVi), with the aim of obtaining biologically active compounds. 3,5-disubstituted indol-2-carboxyhydrazides (Ia-If) were allowed to react with 3-acetyl-2,5-dichlorothiophene (II) to yield the corresponding 3,5-disubstituted indol-2-carbohydrazides (IIIa-IIIf). The pre-formed indolecarbohydrazides (IIIa-IIIf) were allowed to react with 2-mercaptoacetic acid or 2-mercaptopropanoic acid to produce thiopheno-4-thiazolidinylindoles (IVa-IVi). This reaction protocol affords a simple, eco-friendly, non-hazardous, easier preparation and high yields. The antioxidant (free radical scavenging, total antioxidant capacity and ferric-reducing antioxidant power) and antimicrobial activities of the synthesised compounds were evaluated. The structures and purity of the products were confirmed by their IR, 1H NMR, 13C NMR and mass spectral and analytical data. Most of the compounds tested showed very significant scavenging, antioxidant and antimicrobial activities. Compounds containing electron donor group (CH3) at the fifth position of indole exhibit an excellent ferric-reducing activity. The present study suggests that compounds IIIa-IIIb, IIIf, IVa-IVc, IVf-IVi, may serve as promising lead scaffolds for antioxidant and antimicrobial agents.
[1] Ames, B. N. (1983). Dietary carcinogens and anticarcinogens: Oxygen radicals and degenerative diseases. Science, 221, 1256–1264. DOI: 10.1126/science.6351251. http://dx.doi.org/10.1126/science.635125110.1126/science.6351251Suche in Google Scholar
[2] BaMaung, N. Y., Craig, R. A., Kawai, M., & Wang, J. (2001). 3-substituted indole angiogenesis inhibitors. U. S. Patent No. 6,323,228. Washington, DC, USA: Patent and Trademark Office. Suche in Google Scholar
[3] Barreca, M. L., Chimirri, A., De Luca, L., Monforte, A. M., Monforte, P., Rao, A., Zappalà, M., Balzarini, J., De Clercq, E., Pannecouque, C., & Witvrouw, M. (2001). Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorganic & Medicinal Chemistry Letters, 11, 1793–1796. DOI: 10.1016/s0960-894x(01)00304-3. http://dx.doi.org/10.1016/S0960-894X(01)00304-310.1016/S0960-894X(01)00304-3Suche in Google Scholar
[4] Barreira, J. C. M., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Pereira, J. A. (2008). Antioxidant activity and bioactive compounds of ten Portuguese regional and commercial almond cultivars. Food and Chemical Toxicology, 46, 2230–2235. DOI: 10.1016/j.fct.2008.02.024. http://dx.doi.org/10.1016/j.fct.2008.02.02410.1016/j.fct.2008.02.024Suche in Google Scholar PubMed
[5] Biradar, J. S., & Manjunath, S. Y. (2004). Synthesis and biological activities of novel 2-(5′-substituted-3′ phenylindole-2′-yl)-1,3,4-oxadiazino[5,6-b] indole 3-(5′-substituted-3′-phenylindole-2′-amido) spiro (indol-3″,2,thiazolidin)-2″,4-diones. Indian Journal of Chemistry Section B, 43, 389–392. 10.1002/chin.200422128Suche in Google Scholar
[6] Biradar, J. S., Sasidhar, B. S., & Parveen, R. (2010). Synthesis, antioxidant and DNA cleavage activities of novel indole derivatives. European Journal of Medicinal Chemistry, 45, 4074–4078. DOI: 10.1016/j.ejmech.2010.05.067. http://dx.doi.org/10.1016/j.ejmech.2010.05.06710.1016/j.ejmech.2010.05.067Suche in Google Scholar PubMed
[7] Biradar, J. S., & Sasidhar, B. S. (2011). Solvent-free, microwave assisted Knoevenagel condensation of novel 2,5-disubstituted indole analogues and their biological evaluation. European Journal of Medicinal Chemistry, 46, 6112–6118. DOI: 10.1016/j.ejmech.2011.10.004. http://dx.doi.org/10.1016/j.ejmech.2011.10.00410.1016/j.ejmech.2011.10.004Suche in Google Scholar PubMed
[8] Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200. DOI: 10.1038/1811199a0. http://dx.doi.org/10.1038/1811199a010.1038/1811199a0Suche in Google Scholar
[9] Bonde, C. G., & Gaikwad, N. J. (2004). Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorganic & Medicinal Chemistry, 12, 2151–2161. DOI: 10.1016/j.bmc.2004.02.024. http://dx.doi.org/10.1016/j.bmc.2004.02.02410.1016/j.bmc.2004.02.024Suche in Google Scholar PubMed
[10] Curcio, M., Puoci, F., Iemma, F., Parisi, O. I., Cirillo, G., Spizzirri, U. G., & Picci, N. (2009). Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. Journal of Agricultural and Food Chemistry, 57, 5933–5938. DOI: 10.1021/jf900778u. http://dx.doi.org/10.1021/jf900778u10.1021/jf900778uSuche in Google Scholar PubMed
[11] Estevão, M. S., Carvalho, L. C., Ribeiro, D., Couto, D., Freitas, M., Gomes, A., Ferreira, L. M., Fernandes, E., & Marques, M. M. B. (2010). Antioxidant activity of unexplored indole derivatives: Synthesis and screening. European Journal of Medicinal Chemistry, 45, 4869–4878. DOI: 10.1016/j.ejmech.2010.07.059. http://dx.doi.org/10.1016/j.ejmech.2010.07.05910.1016/j.ejmech.2010.07.059Suche in Google Scholar PubMed
[12] Francis, J. S., Doherty, M. C., Lopatin, U., Johnston, C. P., Sinha, G., Ross, T., Cai, M., Hansel, N. N., Perl, T., Ticehurst, J. R., Carroll, K., Thomas, D. L., Nuermberger, E., & Barlett, G. (2005). Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes. Clinical Infectious Diseases, 40, 100–107. DOI: 10.1086/427148. http://dx.doi.org/10.1086/42714810.1086/427148Suche in Google Scholar PubMed
[13] Hadjipavlou-Litina, D., Magoulas, G. E., Bariamis, S. E., Drainas, D., Avgoustakis, K., & Papaioannou, D. (2010). Does conjugation of antioxidants improve their antioxidative/anti-inflammatory potential?. Bioorganic & Medicinal Chemistry, 18, 8204–8217. DOI: 10.1016/j.bmc.2010.10.012. http://dx.doi.org/10.1016/j.bmc.2010.10.01210.1016/j.bmc.2010.10.012Suche in Google Scholar PubMed
[14] Havrylyuk, D., Zimenkovsky, B., Vasylenko, O., Zaprutko, L., Gzella, A., & Lesyk, R. (2009). Synthesis of novel thiazolonebased compounds containing pyrazoline moiety and evaluation of their anticancer activity. European Journal of Medicinal Chemistry, 44, 1396–1404. DOI: 10.1016/j.ejmech.2008.09.032. http://dx.doi.org/10.1016/j.ejmech.2008.09.03210.1016/j.ejmech.2008.09.032Suche in Google Scholar PubMed
[15] Jenner, P., & Olanow, C. W. (1996). Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology, 47, 161–170. DOI: 10.1212/wnl.47.6 suppl 3.161s. http://dx.doi.org/10.1212/WNL.47.6_Suppl_3.161S10.1212/WNL.47.6_Suppl_3.161SSuche in Google Scholar
[16] Kataoka, M., Tonooka, K., Ando, T., Imai, K., & Aimoto, T. (1997). Hydroxyl radical scavenging activity of nonsteroidal anti-inflammatory drugs. Free Radical Research, 27, 419–427. DOI: 10.3109/10715769709065781. http://dx.doi.org/10.3109/1071576970906578110.3109/10715769709065781Suche in Google Scholar PubMed
[17] Khan, S. A., Asiri, A. M., & Yusuf, M. (2009). Synthesis and biological evaluation of some thiazolidinone derivatives of steroid as antibacterial agents. European Journal of Medicinal Chemistry, 44, 2597–2600. DOI: 10.1016/j.ejmech.2009.04.032. http://dx.doi.org/10.1016/j.ejmech.2008.09.00410.1016/j.ejmech.2009.04.032Suche in Google Scholar
[18] Koleva, I. I., van Beek, T. A., Linssen, J. P. H., de Groot, A., & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: a comparative study of three testing methods. Phytochemical Analysis, 13, 8–17. DOI: 10.1002/pca.611. http://dx.doi.org/10.1002/pca.61110.1002/pca.611Suche in Google Scholar PubMed
[19] Mohareb, R. M., Ahmed, H. H., Elmegeed, G. A., Abd-Elhalim, M. M., & Shafic, R. W. (2011). Development of new indole-derived neuroprotectiveagents. Bioorganic & Medicinal Chemistry, 19, 2966–2974. DOI: 10.1016/j.bmc.2011.03.031. http://dx.doi.org/10.1016/j.bmc.2011.03.03110.1016/j.bmc.2011.03.031Suche in Google Scholar PubMed
[20] Park, J. Y., Kim, E. J., Kwon, K. J., Jung, Y. S., Moon, C. H., Lee, S. H., & Baik, E. J. (2004). Neuroprotection by fructose-1,6-bisphosphate involves ROS alterations via p38 MAPK/ERK. Brain Research, 1026, 295–301. DOI: 10.1016/j.brainres.2004.08.039. http://dx.doi.org/10.1016/j.brainres.2004.08.03910.1016/j.brainres.2004.08.039Suche in Google Scholar PubMed
[21] Praveen, C., Ayyanar, A., & Perumal, P. T. (2011). Practical synthesis, anticonvulsant and antimicrobial activity of N-allyl and N-propargyl di(indolyl)indolin-2-ones. Bioorganic & Medicinal Chemistry Letters, 21, 4072–4077. DOI: 10.1016/j.bmcl.2011.04.117. http://dx.doi.org/10.1016/j.bmcl.2011.04.11710.1016/j.bmcl.2011.04.117Suche in Google Scholar PubMed
[22] Saenjum, C., Chaiyasut, C., Kadchumsang, S., Chansakaow, S., & Suttajit, M. (2010). Antioxidant activity and protective effects on DNA damage of Caesalpinia sappan L. extract. Journal of Medicinal Plants Research, 4, 1594–1600. DOI: 10.5897/jmpr10.080. Suche in Google Scholar
[23] Simonian, N. A., & Coyle, J. T. (1996). Oxidative stress in neurodegenerative diseases. Annual Review of Pharmacology Toxicology, 36, 83–106. DOI: 10.1146/annurev.pa.36.040196.000503. http://dx.doi.org/10.1146/annurev.pa.36.040196.00050310.1146/annurev.pa.36.040196.000503Suche in Google Scholar
[24] Singh, R. P., Murthy, K. N. C., & Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50, 81–86. DOI: 10.1021/jf010865b. http://dx.doi.org/10.1021/jf010865b10.1021/jf010865bSuche in Google Scholar
[25] Squadrito, G. L., & Pryor, W. A. (1998). Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite and carbon dioxide. Free Radical Biology and Medicine, 25, 392–403. DOI: 10.1016/s0891-5849(98)00095-1. http://dx.doi.org/10.1016/S0891-5849(98)00095-110.1016/S0891-5849(98)00095-1Suche in Google Scholar
[26] Süzen, S. (2007). Antioxidant activities of synthetic indole derivatives and possible activity mechanisms. Topics in Heterocyclic Chemistry, 11, 145–178. DOI: 10.1007/7081 2007074. http://dx.doi.org/10.1007/7081_2007_074Suche in Google Scholar
[27] Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40. DOI: 10.1016/j.cbi.2005.12.009. http://dx.doi.org/10.1016/j.cbi.2005.12.00910.1016/j.cbi.2005.12.009Suche in Google Scholar PubMed
[28] Vicini, P., Geronikaki, A., Anastasia, K., Incerti, M., & Zani, F. (2006). Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorganic & Medicinal Chemistry, 14, 3859–3864. DOI: 10.1016/j.bmc.2006.01.043. http://dx.doi.org/10.1016/j.bmc.2006.01.04310.1016/j.bmc.2006.01.043Suche in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Analytical protocol for investigation of zinc speciation in plant tissue
- Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
- Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
- Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
- Determination of limiting current density for different electrodialysis modules
- Dyeing of multiple types of fabrics with a single reactive azo disperse dye
- Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
- Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
- Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
- Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
- Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
- Total synthesis of cannabisin F
- Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
- Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
- DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
- Efficient thioacetalisation of carbonyl compounds
- Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide
Artikel in diesem Heft
- Analytical protocol for investigation of zinc speciation in plant tissue
- Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
- Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
- Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
- Determination of limiting current density for different electrodialysis modules
- Dyeing of multiple types of fabrics with a single reactive azo disperse dye
- Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
- Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
- Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
- Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
- Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
- Total synthesis of cannabisin F
- Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
- Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
- DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
- Efficient thioacetalisation of carbonyl compounds
- Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide