Abstract
The aim of the research was to study how the surface coating with quaternary ammonium silanes influences the attachment of industrial yeast cells. Three brewery and distillery strains belonging to Saccharomyces cerevisiae, and one strain of Debaryomyces occidentalis with high amylolytic activity were used in this study. Native chamotte carriers were modified using two organo-silanes with different functional groups containing ethanolamine ([3-N(N,N,N-dimethyl(2-hydroxyethyl)ammonio)propyl]trimethoxysilane) and octan-1-amine (octylamine) ([3-N(N,N,N-dimethyl-octylammonio)propyl]trimethoxysilane). The yeast cell surface charge was evaluated using an alcian blue retention assay. To determine the adhesion efficiency, light microscopy and methylene blue staining of cells were used. The viability of immobilized cells was confirmed by [2-chloro-4-(2,3 dihydro-3-methyl(benzo-1,3-thiozol-2-yl)-methylidene)-1-phenylquinolinium iodide] (FUN®1) staining. Modification of chamotte carriers increased the biomass load significantly; however, organo-silane with octylamine showed strong anti-yeast properties. This paper describes the use of inexpensive porous chamotte covered with active organo-silanes with quaternary ammonium groups as a way to improve yeast cell adhesion efficiency.
[1] Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T., & Matsunaga, T. (2008). Formation of magnetite by bacteria and its application. Journal of the Royal Society Interface, 5, 977–999. DOI: 10.1098/rsif.2008.0170. http://dx.doi.org/10.1098/rsif.2008.017010.1098/rsif.2008.0170Suche in Google Scholar PubMed PubMed Central
[2] Arkles, B., Steinmetz, J. R., Zazyczny, J., & Metha, P. (1992). Factors contributing to the stability of alkoxysilanes in aqueous solution. In K. L. Mittal (Ed.), Silanes and other coupling agents (pp. 91–104). Utrecht, The Netherlands: VSP. Suche in Google Scholar
[3] Awad, A. M., Ghazy, E. A., Abo El-Enin, S. A., & Mahmoud, M. G. (2012). Electropolishing of AISI-304 stainless steel for protection against SRB biofilm. Surface and Coatings Technology, 206, 3165–3172. DOI: 10.1016/j.surfcoat.2011.11.046. http://dx.doi.org/10.1016/j.surfcoat.2011.11.04610.1016/j.surfcoat.2011.11.046Suche in Google Scholar
[4] Bakalova, S., Mincheva, V., Doycheva, A., Groudeva, V., & Dimkov, R. (2008). Microbial toxicity of ethanolamines. Biotechnology & Biotechnological Equipment, 22, 716–720. 10.1080/13102818.2008.10817540Suche in Google Scholar
[5] Bearinger, J. P., Stone, G., Hiddessen, A. L., Dugan, L. C., Wu, L. G., Hailey, P., Conway, J. W., Kuenzler, T., Feller, L., Cerritelli, S., & Hubbell, J. A. (2009). Phototocatalytic lithography of poly(propylene sulfide) block copolymers: Toward high-throughput nanolithography for biomolecular arraying applications. Langmuir, 25, 1238–1244. DOI: 10.1021/la802727s. http://dx.doi.org/10.1021/la802727s10.1021/la802727sSuche in Google Scholar PubMed PubMed Central
[6] Berlowska, J., Kregiel, D., & Ambroziak, W. (2013). Enhancing adhesion of yeast brewery strains to chamotte carriers through aminosilane surface modification. World Journal of Microbiology and Biotechnology, 29, 1307–1316. DOI: 10.1007/s11274-013-1294-4. http://dx.doi.org/10.1007/s11274-013-1294-410.1007/s11274-013-1294-4Suche in Google Scholar PubMed
[7] Bučko, M., Mislovičová, D., Nahálka, J., Vikartovská, A., Šefčovičová, J., Katrlík, J., Tkáč, J., Gemeiner, P., Lacík, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovičová, D., & Švitel, J. (2012). Immobilization in biotechnology and biorecognition: from macro-to nanoscale systems. Chemical Papers, 66, 983–998. DOI: 10.2478/s11696-012-0226-3. http://dx.doi.org/10.2478/s11696-012-0226-310.2478/s11696-012-0226-3Suche in Google Scholar
[8] Carré, A., Birch, W., & Lacarrière, V. (2007). Glass substrates modified with organosilanes for DNA immobilization. In K. L. Mittal (Ed.), Silanes and other coupling agents (pp. 1–14). Utrecht, The Netherlands: VSP. Suche in Google Scholar
[9] Chevalier, S., Cuestas-Ayllon, C., Grazu, V., Luna, M., Feracci, H., & de la Fuente, J. M. (2010). Creating biomimetic surfaces through covalent and oriented binding of proteins. Langmuir, 26, 14707–14715. DOI: 10.1021/la103086b. http://dx.doi.org/10.1021/la103086b10.1021/la103086bSuche in Google Scholar PubMed
[10] Fortuniak, W., Mizerska, U., Chojnowski, J., Basinska, T., Slomkowski, S., Chehimi, M. M., Konopacka, A., Turecka, K., & Werel, W. (2011). Polysiloxanes with quaternary ammonium salt biocidal functions and their behavior when incorporated into a silicone elastomer network. Journal of Inorganic and Organometallic Polymers and Materials, 21, 576–589. DOI: 10.1007/s10904-011-9485-7. http://dx.doi.org/10.1007/s10904-011-9485-710.1007/s10904-011-9485-7Suche in Google Scholar
[11] Garsin, D. A. (2010). Ethanolamine utilization in bacterial pathogens: roles and regulation. Nature Reviews Microbiology, 8, 290–295. DOI: 10.1038/nrmicro2334. http://dx.doi.org/10.1038/nrmicro233410.1038/nrmicro2334Suche in Google Scholar PubMed PubMed Central
[12] Gong, S. Q., Niu, L. N., Kemp, L. K., Yiu, C. K. Y., Ryou, H. J., Qi, Y. P., Blizzard, J. D., Nikonov, S., Brackett, M. G., Messer, R. L. W., Wu, C. D., Mao, J., Brister, L. B., Rueggeberg, F. A., Arola, D. D., Pashley, D. H., & Tay, F. R. (2012). Quaternary ammonium silane-functionalized, methacrylate resin composition with antimicrobial activities and self-repair potential. Acta Biomaterialia, 8, 3270–3282. DOI: 10.1016/j.actbio.2012.05.031. http://dx.doi.org/10.1016/j.actbio.2012.05.03110.1016/j.actbio.2012.05.031Suche in Google Scholar PubMed PubMed Central
[13] Jørgensen, K., Morant, A. V., Morant, M., Jensen, N. B., Olsen, C. E., Kannangara, R., Motawia, M. S., Møller, B. L., & Bak, S. (2011). Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: Isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiology, 155, 282–292. DOI: 10.1104/pp.110.164053. http://dx.doi.org/10.1104/pp.110.16405310.1104/pp.110.164053Suche in Google Scholar
[14] Khramov, A. N., Balbyshev, V. N., Voevodin, N. N., & Donley, M. S. (2003). Nanostructured sol-gel derived conversion coatings based on epoxy- and amino-silanes. Progress in Organic Coatings, 47, 207–213. DOI: 10.1016/s0300-9440(03)00140-1. http://dx.doi.org/10.1016/S0300-9440(03)00140-110.1016/S0300-9440(03)00140-1Suche in Google Scholar
[15] Kregiel, D., Berlowska, J., & Ambroziak, W. (2012a). Adhesion of yeast cells to different porous supports, stability of cellcarrier systems and formation of volatile by-products. World Journal of Microbiology and Biotechnology, 28, 3399–3408. DOI: 10.1007/s11274-012-1151-x. http://dx.doi.org/10.1007/s11274-012-1151-x10.1007/s11274-012-1151-xSuche in Google Scholar PubMed PubMed Central
[16] Kregiel, D., Berlowska, J., & Szubzda, B. (2012b). Novel permittivity test for determination of yeast surface charge and flocculation abilities. Journal of Industrial Microbiology and Biotechnology, 39, 1881–1886. DOI: 10.1007/s10295-012-1193-y. http://dx.doi.org/10.1007/s10295-012-1193-y10.1007/s10295-012-1193-ySuche in Google Scholar PubMed PubMed Central
[17] Kregiel, D., Berlowska, J., Mizerska, U., Fortuniak, W., Chojnowski, J., & Ambroziak, W. (2013). Chemical modification of polyvinyl chloride and silicone elastomer in inhibiting adhesion of Aeromonas hydrophila. World Journal of Microbiology and Biotechnology, 29, 1197–1206. DOI: 10.1007/s11274-013-1282-8. http://dx.doi.org/10.1007/s11274-013-1282-810.1007/s11274-013-1282-8Suche in Google Scholar PubMed PubMed Central
[18] Metwalli, E., Haines, D., Becker, O., Conzone, S., & Pantano, C. G. (2006). Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates. Journal of Colloid and Interface Science, 298, 825–831. DOI: 10.1016/j.jcis.2006.03.045. http://dx.doi.org/10.1016/j.jcis.2006.03.04510.1016/j.jcis.2006.03.045Suche in Google Scholar PubMed
[19] Oosterhof, J. J. H., Buijssen, K. J. D. A., Busscher, H. J., van der Laan, B. F. A. M., & van der Mei, H. C. (2006). Effects of quaternary ammonium silane coatings on mixed fungal and bacterial biofilms on tracheoesophageal shunt prostheses. Applied and Environmental Microbiology, 72, 3673–3677. DOI: 10.1128/aem.72.5.3673-3677.2006. http://dx.doi.org/10.1128/AEM.72.5.3673-3677.200610.1128/AEM.72.5.3673-3677.2006Suche in Google Scholar PubMed PubMed Central
[20] Palermo, E. F., Lee, D. K., Ramamoorthy, A., & Kuroda, K. (2011). Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers. Journal of Physical Chemistry B, 115, 366–375. DOI: 10.1021/jp1083357. http://dx.doi.org/10.1021/jp108335710.1021/jp1083357Suche in Google Scholar PubMed PubMed Central
[21] Pina-Vaz, C., Costa-de-Oliveira, S., Rodrigues, A. G., & Espinel-Ingroff, A. (2005). Comparison of two probes for testing susceptibilities of pathogenic yeasts to voriconazole, itraconazole, and caspofungin by flow cytometry. Journal of Clinical Microbiology, 43, 4674–4679. DOI: 10.1128/jcm.43.9.4674-4679.2005. http://dx.doi.org/10.1128/JCM.43.9.4674-4679.200510.1128/JCM.43.9.4674-4679.2005Suche in Google Scholar PubMed PubMed Central
[22] Plueddemann, E. P. (1991). Silane coupling agents. New York, NY, USA: Plenum Press. http://dx.doi.org/10.1007/978-1-4899-2070-610.1007/978-1-4899-2070-6Suche in Google Scholar
[23] Powell, C. D., Quain, D. E., & Smart, K. A. (2003). The impact of brewing yeast cell age on fermentation performance, atten uation and flocculation. FEMS Yeast Research, 3, 149–157. DOI: 10.1016/s1567-1356(03)00002-3. http://dx.doi.org/10.1016/S1567-1356(03)00002-310.1016/S1567-1356(03)00002-3Suche in Google Scholar
[24] Rapoport, A., Borovikova, D., Kokina, A., Patmalnieks, A., Polyak, N., Pavlovska, I., Mezinskis, G., & Dekhtyar, Y. (2011). Immobilisation of yeast cells on the surface of hydroxyapatite ceramics. Process Biochemistry, 46, 665–670. DOI: 10.1016/j.procbio.2010.11.009. http://dx.doi.org/10.1016/j.procbio.2010.11.00910.1016/j.procbio.2010.11.009Suche in Google Scholar
[25] Saal, K., Tätte, T., Tulp, I., Kink, I., Kurg, A., Mäeorg, U., Rinken, A., & Löhmus, A. (2006). Sol-gel films for DNA microarray applications. Materials Letters, 60, 1833–1838 DOI: 10.1016/j.matlet.2005.12.035. http://dx.doi.org/10.1016/j.matlet.2005.12.03510.1016/j.matlet.2005.12.035Suche in Google Scholar
[26] Safarik, I., & Safarikova, M. (2009). Magnetic nano- and microparticles in biotechnology. Chemical Papers, 63, 497–505. DOI: 10.2478/s11696-009-0054-2. http://dx.doi.org/10.2478/s11696-009-0054-210.2478/s11696-009-0054-2Suche in Google Scholar
[27] Schmidt, E. J., Boswell, J. S., Walsh, J. P., Schellenberg, M. M., Winter, T. W., Li, C. H., Allman, G. W., & Savage, P. B. (2001). Activities of cholic acid-derived antimicrobial agents against multidrug-resistant bacteria. Journal of Antimicrobial Chemotherapy, 47, 671–674. DOI: 10.1093/jac/47.5.671. http://dx.doi.org/10.1093/jac/47.5.67110.1093/jac/47.5.671Suche in Google Scholar
[28] Seo, J. H., Shin, D. S., Mukundan, P., & Revzin, A. (2012). Attachment of hydrogel microstructures and proteins to glass via thiol-terminated silanes. Colloids and Surfaces B: Biointerfaces, 98, 1–6. DOI: 10.1016/j.colsurfb.2012.03.025. http://dx.doi.org/10.1016/j.colsurfb.2012.03.02510.1016/j.colsurfb.2012.03.025Suche in Google Scholar
[29] Srikumar, S., & Fuchs, T. M. (2011). Ethanolamine utilization contributes to proliferation of Salmonella enterica serovar Typhimurium in food and in nematodes. Applied and Environmental Microbiology, 77, 281–290. DOI: 10.1128/aem.01403-10. http://dx.doi.org/10.1128/AEM.01403-1010.1128/AEM.01403-10Suche in Google Scholar
[30] Storey, M. K., Wu, W. I., & Voelker, D. R. (2001). A genetic screen for ethanolamine auxotrophs in Saccharomyces cerevisiae identifies a novel mutation in Mcd4p, a protein implicated in glycosylphosphatidylinositol anchor synthesis. Biochimica et Biophysica Acta (BBA) — Molecular and Cell Biology of Lipids, 1532, 234–247. DOI: 10.1016/s1388-1981(01)00129-9. http://dx.doi.org/10.1016/S1388-1981(01)00129-910.1016/S1388-1981(01)00129-9Suche in Google Scholar
[31] Tang, H. Y., Cao, T., Wang, A. F., Liang, X. M., Salley, S. O., McAllister, J. P., & Ng, K. Y. S. (2007). Effect of surface modification of silicone on Staphylococcus epidermidis adhesion and colonization. Journal of Biomedical Materials Research, 80A, 885–894. DOI: 10.1002/jbm.a.30952. http://dx.doi.org/10.1002/jbm.a.3095210.1002/jbm.a.30952Suche in Google Scholar PubMed
[32] Van Zandycke, S. M., Simal, O., & Smart, K. A. (2008). Vitality assessment using the fluorescent stain FUN1. In K. Smart (Ed.), Brewing yeast fermentation performance. Oxford, UK: Blackwell Science. DOI: 10.1002/9780470696040.ch15. 10.1002/9780470696040.ch15Suche in Google Scholar
[33] Verstrepen, K. J., & Klis, F. M. (2006). Flocculation, adhesion and biofilm formation in yeast. Molecular Microbiology, 60, 5–15. DOI: 10.1111/j.1365-2958.2006.05072.x. http://dx.doi.org/10.1111/j.1365-2958.2006.05072.x10.1111/j.1365-2958.2006.05072.xSuche in Google Scholar PubMed
[34] Vu, D. L., Sys, M., & Červenka, L. (2011). The effect of various potentials on the attachment of Saccharomyces cerevisiae and Staphylococcus epidermidis to carbon paste electrodes. International Journal of Electrochemical Science, 6, 5265–5274. Suche in Google Scholar
[35] White, J. S., & Walker, G. M. (2011). Influence of cell surface characteristics on adhesion of Saccharomyces cerevisiae to the biomaterial hydroxylapatite. Antonie Van Leeuwenhoek, 99, 201–209. DOI: 10.1007/s10482-010-9477-6. http://dx.doi.org/10.1007/s10482-010-9477-610.1007/s10482-010-9477-6Suche in Google Scholar PubMed
[36] Yamaguchi, M., Ikeda, K., Suzuki, M., Kiyohara, A., Kudoh, S. N., Shimizu, K., Taira, T., Ito, D., Uchida, T., & Gohara, K. (2011). Cell patterning using a template of microstructured organosilane layer fabricated by vacuum ultraviolet light lithography. Langmuir, 27, 12521–12532. DOI: 10.1021/la202904g. http://dx.doi.org/10.1021/la202904g10.1021/la202904gSuche in Google Scholar PubMed
[37] Zeraik, A. E., & Nitschke, M. (2012). Influence of growth media and temperature on bacterial adhesion to polystyrene surfaces. Brazilian Archives of Biology and Technology, 55, 569–576. DOI: 10.1590/s1516-89132012000400012. http://dx.doi.org/10.1590/S1516-8913201200040001210.1590/S1516-89132012000400012Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Analytical protocol for investigation of zinc speciation in plant tissue
- Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
- Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
- Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
- Determination of limiting current density for different electrodialysis modules
- Dyeing of multiple types of fabrics with a single reactive azo disperse dye
- Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
- Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
- Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
- Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
- Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
- Total synthesis of cannabisin F
- Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
- Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
- DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
- Efficient thioacetalisation of carbonyl compounds
- Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide
Artikel in diesem Heft
- Analytical protocol for investigation of zinc speciation in plant tissue
- Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
- Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
- Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
- Determination of limiting current density for different electrodialysis modules
- Dyeing of multiple types of fabrics with a single reactive azo disperse dye
- Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
- Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
- Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
- Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
- Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
- Total synthesis of cannabisin F
- Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
- Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
- DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
- Efficient thioacetalisation of carbonyl compounds
- Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide