Startseite Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture

  • Aleksandra Rakić EMAIL logo , Marija Vukomanović und Gordana Ćirić-Marjanović
Veröffentlicht/Copyright: 15. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nanostructured polyaniline (PANI) was synthesised by the oxidation of aniline in a water/ isopropanol (propan-2-ol, IPA) (50 vol. %) mixture, without added acid, using ammonium peroxydisulfate (APS) as an oxidant. Influence of the IPA co-solvent and the reaction time on the molecular structure, morphology and properties of synthesised PANI samples was studied by FTIR, Raman, and UV-VIS spectroscopies, scanning and transmission electron microscopies (SEM and TEM), and conductivity measurements. The course of the reaction was followed by monitoring changes in the temperature and acidity of the reaction medium. The results were compared with those obtained for PANI prepared in water without IPA under the same reaction conditions. The importance of the solvation effects, dielectric constant of the solvent, and the enthalpy of mixing of IPA with water on the course of the polymerisation reaction and on the properties of polymeric products in the water/IPA medium in comparison with those in water was pointed out.

[1] Chiou, N. R., Lee, L. J., & Epstein, A. J. (2007). Self-assembled polyaniline nanofibers/nanotubes. Chemistry of Materials, 19, 3589–3591. DOI: 10.1021/cm070847v. http://dx.doi.org/10.1021/cm070847v10.1021/cm070847vSuche in Google Scholar

[2] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2006). MNDO-PM3 study of the early stages of the chemical oxidative polymerization of aniline. Collection of Czechoslovak Chemical Communications, 71, 1407–1426. DOI: 10.1135/cccc20061407. http://dx.doi.org/10.1135/cccc2006140710.1135/cccc20061407Suche in Google Scholar

[3] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008a). Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. International Journal of Quantum Chemistry, 108, 318–333. DOI: 10.1002/qua.21506. http://dx.doi.org/10.1002/qua.2150610.1002/qua.21506Suche in Google Scholar

[4] Ćirić-Marjanović, G., Konyushenko, E. N., Trchová, M., & Stejskal, J. (2008b). Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 158, 200–211. DOI: 10.1016/j.synthmet.2008.01.005. http://dx.doi.org/10.1016/j.synthmet.2008.01.00510.1016/j.synthmet.2008.01.005Suche in Google Scholar

[5] Ćirić-Marjanović, G. Trchová, M., & Stejskal, J. (2008c). The chemical oxidative polymerization of aniline in water: Raman Spectroscopy. Journal of Raman Spectroscopy, 39, 1375–1387. DOI: 10.1002/jrs.2007. http://dx.doi.org/10.1002/jrs.200710.1002/jrs.2007Suche in Google Scholar

[6] Ćirić-Marjanović, G., Dondur, V., Milojević, M., Mojović, M., Mentus, S., Radulović, A., Vuković, Z., & Stejskal, J. (2009a). Synthesis and characterization of conducting self-assembled polyaniline nanotubes/zeolite nanocomposite. Langmuir, 25, 3122–3131. DOI: 10.1021/la8030396. http://dx.doi.org/10.1021/la803039610.1021/la8030396Suche in Google Scholar PubMed

[7] Ćirić-Marjanović, G., Dragičević, L., Milojević, M., Mojović, M., Mentus, S., Dojčinović, B., Marjanović, B., & Stejskal, J. (2009b). Synthesis and characterization of selfassembled polyaniline nanotubes/silica nanocomposites. The Journal of Physical Chemistry B, 113, 7116–7127. DOI: 10.1021/jp900096b. http://dx.doi.org/10.1021/jp900096b10.1021/jp900096bSuche in Google Scholar PubMed

[8] Ćirić-Marjanović, G. (2010). Polyaniline nanostructures. In A. Eftekhari (Ed.), Nanostructured conductive polymers (Chapter 2, pp. 19–98). Chichester, UK: Wiley. DOI: 10.1002/9780470661338.ch2. http://dx.doi.org/10.1002/9780470661338.ch210.1002/9780470661338.ch2Suche in Google Scholar

[9] de Albuquerque, J. E., Mattoso, L. H. C., Faria, R. M., Masters, J. G., & MacDiarmid, A. G. (2004). Study of the interconversion of polyaniline oxidation states by optical absorption spectroscopy. Synthetic Metals, 146, 1–10. DOI: 10.1016/j.synthmet.2004.05.019. http://dx.doi.org/10.1016/j.synthmet.2004.05.01910.1016/j.synthmet.2004.05.019Suche in Google Scholar

[10] de Souza, F. G., Jr., Anzai, T. K., Melo, P. A., Jr., Soares, B. G., Nele, M., & Pinto, J. C. (2008). Influence of reaction media on pressure sensitivity of polyanilines doped with DBSA. Journal of Applied Polymer Science, 107, 2404–2413. DOI: 10.1002/app.27290. http://dx.doi.org/10.1002/app.2729010.1002/app.27290Suche in Google Scholar

[11] Ding, H., Shen, J., Wan, M., & Chen, Z. (2008). Formation mechanism of polyaniline nanotubes by a simplified template-free method. Macromolecular Chemistry and Physics, 209, 864–871. DOI: 10.1002/macp.200700624. http://dx.doi.org/10.1002/macp.20070062410.1002/macp.200700624Suche in Google Scholar

[12] Fragata, M., & Bellemare, F. (1982). Dielectric constant dependence of biological oxidation-reduction: 1. A model of polarity-dependent ferrocytochrome c oxidation. Biophysical Chemistry, 15, 111–119. DOI: 10.1016/0301-4622(82)80023-9. http://dx.doi.org/10.1016/0301-4622(82)80023-910.1016/0301-4622(82)80023-9Suche in Google Scholar

[13] Huang, J., & Kaner, R. B. (2004). Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angewandte Chemie International Edition, 43, 5817–5821. DOI: 10.1002/anie.200460616. http://dx.doi.org/10.1002/anie.20046061610.1002/anie.200460616Suche in Google Scholar PubMed

[14] Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer, 50, 775–782. DOI: 10.1016/j.polymer.2008.12.016. http://dx.doi.org/10.1016/j.polymer.2008.12.01610.1016/j.polymer.2008.12.016Suche in Google Scholar

[15] Huang, Y. F., & Lin, C. W. (2010a). Exploration of the morphological transition phenomenon of polyaniline from microspheres to nanotubes in acid-free aqueous 1-propanol solution in a single polymerization process. Polymer International, 59, 1226–1232 DOI: 10.1002/pi.2852. http://dx.doi.org/10.1002/pi.285210.1002/pi.2852Suche in Google Scholar

[16] Huang, Y. F., & Lin, C. W. (2010b). The structure change-induced morphology transition of polyaniline in 1.6-hexanediol aqueous and acid-free solutions: From submicron-spheres to nanofibers. Synthetic Metals, 160, 384–389. DOI: 10.1016/j.synthmet.2009.11.011. http://dx.doi.org/10.1016/j.synthmet.2009.11.01110.1016/j.synthmet.2009.11.011Suche in Google Scholar

[17] Jaffé, H. H., & Orchin, M. (1965). Theory and applications of ultraviolet spectroscopy. New York, NY, USA: Willey. Suche in Google Scholar

[18] Kan, J., Lv, R., & Zhang, S. (2004). Effect of ethanol on properties of electrochemically synthesized polyaniline. Synthetic Metals, 145, 37–42. DOI: 10.1016/j.synthmet.2004.04.017. http://dx.doi.org/10.1016/j.synthmet.2004.04.01710.1016/j.synthmet.2004.04.017Suche in Google Scholar

[19] Kan, J., Zhang, S., & Jing, G. (2006). Effect of ethanol on chemically synthesized polyaniline nanothread. Journal of Applied Polymer Science, 99, 1848–1853. DOI: 10.1002/app.22345. http://dx.doi.org/10.1002/app.2234510.1002/app.22345Suche in Google Scholar

[20] Kohut-Svelko, N., Reynaud, S., & François, J. (2005). Synthesis and characterization of polyaniline prepared in the presence of nonionic surfactants in an aqueous dispersion. Synthetic Metals, 150, 107–114. DOI: 10.1016/j.synthmet.2004.12.022. http://dx.doi.org/10.1016/j.synthmet.2004.12.02210.1016/j.synthmet.2004.12.022Suche in Google Scholar

[21] Konyushenko, E. N., Stejskal, J., Šeděnková, I., Trchová, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI: 10.1002/pi.1899. http://dx.doi.org/10.1002/pi.189910.1002/pi.1899Suche in Google Scholar

[22] Konyushenko, E. N., Reynaud, S., Pellerin, V., Trchová, M., Stejskal, J., & Sapurina, I. (2011). Polyaniline prepared in ethylene glycol or glycerol. Polymer, 52, 1900–1907. DOI: 10.1016/j.polymer.2011.02.047. http://dx.doi.org/10.1016/j.polymer.2011.02.04710.1016/j.polymer.2011.02.047Suche in Google Scholar

[23] Laska, J. (2004). Conformations of polyaniline in polymer blends. Journal of Molecular Structure, 701, 13–18. DOI: 10.1016/j.molstruc.2004.05.021. http://dx.doi.org/10.1016/j.molstruc.2004.05.02110.1016/j.molstruc.2004.05.021Suche in Google Scholar

[24] Laslau, C., Zujovic, Z. D., & Travas-Sejdic, J. (2009). Polyaniline “nanotube” self-assembly: The stage of granular agglomeration on nanorod templates. Macromolecular Rapid Communications, 30, 1663–1668. DOI: 10.1002/marc.200900244. http://dx.doi.org/10.1002/marc.20090024410.1002/marc.200900244Suche in Google Scholar

[25] Levitt, L. S., & Malinowski, E. R. (1955). Mechanism of organic oxidation in aqueous solution. I. Kinetics of the persulfate oxidation of isopropyl alcohol. Journal of the American Chemical Society, 77, 4517–4521. DOI: 10.1021/ja01622a022. http://dx.doi.org/10.1021/ja01622a02210.1021/ja01622a022Suche in Google Scholar

[26] Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, J. G. (1991). The handbook of infrared and Raman characteristic frequencies of organic molecules (pp. 277–290). San Diego, CA, USA: Academic Press. http://dx.doi.org/10.1016/B978-0-08-057116-4.50023-710.1016/B978-0-08-057116-4.50023-7Suche in Google Scholar

[27] Marjanović, B., Juranić, I., & Ćirić-Marjanović, G. (2011). Revised mechanism of Boyland-Sims oxidation. The Journal of Physical Chemistry A, 115, 3536–3550. DOI: 10.1021/ jp111129t. http://dx.doi.org/10.1021/jp111129t10.1021/jp111129tSuche in Google Scholar

[28] Morávková, Z., Trchová, M., Tomšík, E., Čechvala, J., & Stejskal, J. (2012). Enhanced thermal stability of multi-walled carbon nanotubes after coating with polyaniline salt. Polymer Degradation and Stability, 97, 1405–1414. DOI: 10.1016/j.polymdegradstab.2012.05.019. http://dx.doi.org/10.1016/j.polymdegradstab.2012.05.01910.1016/j.polymdegradstab.2012.05.019Suche in Google Scholar

[29] Morávková, Z., Trchová, M., Tomšík, E., & Stejskal, J. 2013). Influence of ethanol on the chain-ordering of carbonised polyaniline. Chemical Papers, 67, 919–932. DOI: 10.2478/s11696-013-0329-5. http://dx.doi.org/10.2478/s11696-013-0329-510.2478/s11696-013-0329-5Suche in Google Scholar

[30] Neoh, K. G., Pun, M. Y., Kang, E. T., & Tan, K. L. (1995). Polyaniline treated with organic acids: doping characteristics and stability. Synthetic Metals, 73, 209–215. DOI: 10.1016/0379-6779(95)80018-2. http://dx.doi.org/10.1016/0379-6779(95)80018-210.1016/0379-6779(95)80018-2Suche in Google Scholar

[31] Park, J. G., Lee, S. H., Ryu, J. S., Hong, Y. K., Kim, T. G., & Busnaina, A. A. (2006). Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning. Journal of the Electrochemical Society, 153, G811–G814. DOI: 10.1149/1.2214532. http://dx.doi.org/10.1149/1.221453210.1149/1.2214532Suche in Google Scholar

[32] Ponner, V. (1969). Mischungswärme der Flüssigkeiten. V. Mischungs- und Lösungswärme im System Isopropanol-Wasser bei 0, 35, 55 und 75°C. Vestnik Leningradskogo Universiteta: Fizika i Khimiya, 9, 142–144. (in German) Suche in Google Scholar

[33] Radoičić, M., Šaponjić, Z., Nedeljković, J., Ćirić-Marjanović, G., & Stejskal, J. (2010). Self-assembled polyaniline nanotubes and nanoribbons/titanium dioxide nanocomposites. Synthetic Metals, 160, 1325–1334. DOI:10.1016/j.synthmet.2010.04.010. http://dx.doi.org/10.1016/j.synthmet.2010.04.01010.1016/j.synthmet.2010.04.010Suche in Google Scholar

[34] Radoičić, M., Šaponjić, Z., Ćirić-Marjanović, G., Konstantinović, Z., Mitrić, M., & Nedeljković, J. (2012). Ferromagnetic polyaniline/TiO2 nanocomposites. Polymer Composites, 33, 1482–1493. DOI: 10.1002/pc.22278. http://dx.doi.org/10.1002/pc.2227810.1002/pc.22278Suche in Google Scholar

[35] Rakić, A., Bajuk-Bogdanović, D., Mojović, M., Ćirić-Marjanović, G., Milojević-Rakić, M., Mentus, S., Marjanović, B., Trchová, M., & Stejskal, J. (2011). Oxidation of aniline in dopant-free template-free dilute reaction media. Materials Chemistry and Physics, 127, 501–510. DOI: 10.1016/j.matchemphys.2011.02.047. http://dx.doi.org/10.1016/j.matchemphys.2011.02.04710.1016/j.matchemphys.2011.02.047Suche in Google Scholar

[36] Socrates, G. (2001). Infrared and Raman characteristic group frequencies. New York, NY, USA: Wiley. Suche in Google Scholar

[37] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. preparation of a conducting polymer. Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Suche in Google Scholar

[38] Talrose, V., Yermakov, A. N., Leskin, A. N., Usov, A. A., Goncharova, A. A., Messineva, N. A., Usova, N. V., Efimkina, M. V., & Aristova, E. V. (2011). UV/Visible spectra. In P. J. Linstrom, & W. G. Mallard (Eds.), NIST Chemistry WebBook: NIST Standard Reference Database Number 69. Gaithersburg, MD, USA: National Institute of Standards and Technology. Suche in Google Scholar

[39] Tomšík, E., Morávková, Z., Stejskal, J., Trchová, M., Šálek, P., Kovářová, J., Zemek, J., Cieslar, M., & Prokeš, J. (2013). Multi-wall carbon nanotubes with nitrogen-containing carbon coating. Chemical Papers, 67, 1054–1065. DOI: 10.2478/s11696-013-0348-2. http://dx.doi.org/10.2478/s11696-013-0348-210.2478/s11696-013-0348-2Suche in Google Scholar

[40] Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: The oxidation of aniline in water. the Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g. http://dx.doi.org/10.1021/jp057528g10.1021/jp057528gSuche in Google Scholar

[41] Xia, Y., Wiesinger, J. M., MacDiarmid, A. G., & Epstein, A. J. (1995). Camphorsulfonic acid fully doped polyaniline emeraldine salt: Conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chemistry of Materials, 7, 443–445. DOI: 10.1021/cm00051a002. http://dx.doi.org/10.1021/cm00051a00210.1021/cm00051a002Suche in Google Scholar

[42] Yang, D., & Mattes, B. R. (2002). Polyaniline emeraldine base in N-methyl-2-pyrrolidinone containing secondary amine additives: B. Characterization of solutions and thin films. Synthetic Metals, 129, 249–260. DOI: 10.1016/s0379-6779(02)00081-4. http://dx.doi.org/10.1016/S0379-6779(02)00081-410.1016/S0379-6779(02)00081-4Suche in Google Scholar

[43] Zhou, S., Wu, T., & Kan, J. (2007). Effect of methanol on morphology of polyaniline. European Polymer Journal, 43, 395–402. DOI: 10.1016/j.eurpolymj.2006.11.011. http://dx.doi.org/10.1016/j.eurpolymj.2006.11.01110.1016/j.eurpolymj.2006.11.011Suche in Google Scholar

[44] Zujovic, Z. D., Zhang, L., Bowmaker, G. A., Kilmartin, P. A., & Travas-Sejdic, J. (2008). Self-assembled, nanostructured aniline oxidation products: A structural investigation. Macromolecules, 41, 3125–3135. DOI: 10.1021/ma071650r. http://dx.doi.org/10.1021/ma071650r10.1021/ma071650rSuche in Google Scholar

[45] Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P., & Travas-Sejdic, J. (2010). Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules, 43, 662–670. DOI: 10.1021/ma902109r. http://dx.doi.org/10.1021/ma902109r10.1021/ma902109rSuche in Google Scholar

Published Online: 2013-11-15
Published in Print: 2014-3-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Analytical protocol for investigation of zinc speciation in plant tissue
  2. Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
  3. Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
  4. Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
  5. Determination of limiting current density for different electrodialysis modules
  6. Dyeing of multiple types of fabrics with a single reactive azo disperse dye
  7. Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
  8. Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
  9. Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
  10. Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
  11. Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
  12. Total synthesis of cannabisin F
  13. Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
  14. Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
  15. DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
  16. Efficient thioacetalisation of carbonyl compounds
  17. Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide
Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0453-2/html?lang=de
Button zum nach oben scrollen