Startseite Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves

  • Xiong Liu EMAIL logo , Dong-Liang Yang , Jia-Jia Liu , Kuan Xu und Guo-Hui Wu
Veröffentlicht/Copyright: 15. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this study was to obtain flavonoids extracts from Calycopteris floribunda leaves using supercritical fluid extraction (SFE) with CO2 and a co-solvent. Pachypodol, a potential anticancer drug lead compound separated from the extracts, was examined. Classical organic solvent extraction (CE) with ethanol was performed to evaluate the high pressure method. HPLC analysis was introduced to interpret the differences between SFE and CE extracts in terms of antioxidant activity and the concentration of pachypodol. SFE kinetics and mathematical modeling of the overall extraction curves (OEC) were investigated. Evaluation of the models against experimental data showed that the Sovová model performs the best. The supercritical fluid extraction process was optimized using a central composite design (CCD), where temperature and pressure were adjusted. The optimal conditions of SFE were: pressure of 30 MPa and temperature of 35°C.

[1] Ali, H. A., Chowdhury, A. K. A., Rahman, A. K. M., Borkowski, T., Nahar, L., & Sarker, S. D. (2008). Pachypodol, a flavonol from the leaves of Calycopteris floribunda, inhibits the growth of CaCo 2 colon cancer cell line in vitro. Phytotherapy Research, 22, 1684–1687. DOI: 10.1002/ptr.2539. http://dx.doi.org/10.1002/ptr.253910.1002/ptr.2539Suche in Google Scholar

[2] Andrade, K. S., Gonçalvez, R. T., Maraschin, M., Ribeiro-do-Valle, R. M., Martínez, J., & Ferreira, S. R. S. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta, 88, 544–552. DOI: 10.1016/j.talanta.2011.11.031. http://dx.doi.org/10.1016/j.talanta.2011.11.03110.1016/j.talanta.2011.11.031Suche in Google Scholar

[3] Bimakr, M., Rahman, R. A., Ganjloo, A., Taip, F. S., Salleh, L. M., & Sarker, M. Z. I. (2011). Optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves by using response surface methodology. Food and Bioprocess Technology, 5, 912–920. DOI: 10.1007/s11947-010-0504-4. http://dx.doi.org/10.1007/s11947-010-0504-410.1007/s11947-010-0504-4Suche in Google Scholar

[4] Chafer, A., Fornari, T., Berna, A., & Stateva, R. P. (2004). Solubility of quercetin in supercritical CO2 + ethanol as a modifier: measurements and thermodynamic modelling. The Journal of Supercritical Fluids, 32, 89–96. DOI: 10.1016/j.supflu.2004.02.005. http://dx.doi.org/10.1016/j.supflu.2004.02.00510.1016/j.supflu.2004.02.005Suche in Google Scholar

[5] Chiu, K. L., Cheng, Y. C., Chen, J. H., Chang, C. J., & Yang, P. W. (2002). Supercritical fluids extraction of Ginkgo ginkgolides and flavonoids. The Journal of Supercritical Fluids, 24, 77–87. DOI: 10.1016/s0896-8446(02)00014-1. http://dx.doi.org/10.1016/S0896-8446(02)00014-110.1016/S0896-8446(02)00014-1Suche in Google Scholar

[6] Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford, UK: Clarendon Press. Suche in Google Scholar

[7] de Lucas, A., Gracia, I., Rincón, J., & García, M. T. (2007). Solubility determination and model prediction of olive husk oil in supercritical carbon dioxide and cosolvents. Industrial & Engineering Chemistry Research, 46, 5061–5066. DOI: 10.1021/ie061153j. http://dx.doi.org/10.1021/ie061153j10.1021/ie061153jSuche in Google Scholar

[8] Huang, Z., Yang, M. J., Liu, S. F., & Ma, Q. (2011). Supercritical carbon dioxide extraction of Baizhu: Experiments and modeling. The Journal of Supercritical Fluids, 58, 31–39. DOI: 10.1016/j.supflu.2011.05.008. http://dx.doi.org/10.1016/j.supflu.2011.05.00810.1016/j.supflu.2011.05.008Suche in Google Scholar

[9] Liu, J. J., Yang, D. L., Zhang, Y., Yuan, Y., Cao, F. X., Zhao, J. M., & Peng, X. B. (2009). Chemical component and antimicrobial activity of volatile oil of Calycopteris floribunda. Journal of Central South Universtiy of Technology, 16, 931–935. DOI: 10.1007/s11771-009-0155-7. http://dx.doi.org/10.1007/s11771-009-0155-710.1007/s11771-009-0155-7Suche in Google Scholar

[10] Kirthikar, K. R., & Basu, B. D. (2001). Indian medicinal plants (Vol. 5). Uttaranchal, India: Oriental Enterprises. Suche in Google Scholar

[11] Kruijtzer, C. M. F., Beijnen, J. H., Rosing, H., ten Bokkel Huinink, W. W., Schot, M., Jewell, R. C., Paul, E. M., & Schellens, J. H. M. (2002). Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. Journal of Clinical Oncology, 20, 2943–2950. DOI: 10.1200/jco.2002.12.116. http://dx.doi.org/10.1200/JCO.2002.12.11610.1200/JCO.2002.12.116Suche in Google Scholar PubMed

[12] Leitão, N. C. M. C. S., Prado, G. H. C., Veggi, P. C., Meireles, M. A. A., & Pereira, C. G. (2013). Anacardium occidentale L. leaves extraction via SFE: Global yields, extraction kinetics, mathematical modeling and economic evaluation. The Journal of Supercritical Fluids, 78, 114–123. DOI: 10.1016/j.supflu.2013.03.024. http://dx.doi.org/10.1016/j.supflu.2013.03.02410.1016/j.supflu.2013.03.024Suche in Google Scholar

[13] Lewin, G., Shridhar, N. B., Aubert, G., Thoret, S., Dubois, J., & Cresteil, T. (2011). Synthesis of antiproliferative flavones from calycopterin, major flavonoid of Calycopteris floribunda Lamk. Bioorganic & Medicinal Chemistry, 19(1), 186–196. DOI: 10.1016/j.bmc.2010.11.035. http://dx.doi.org/10.1016/j.bmc.2010.11.03510.1016/j.bmc.2010.11.035Suche in Google Scholar

[14] Martínez, J., Monteiro, A. R., Rosa, P. T. V., Marques, M. O. M., & Meireles, M. A. A. (2003). Multicomponent model to describe extraction of ginger oleoresin with supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 42, 1057–1063. DOI: 10.1021/ie020694f. http://dx.doi.org/10.1021/ie020694f10.1021/ie020694fSuche in Google Scholar

[15] Mayer, R. (1999). Calycopterones and calyflorenones, novel biflavonoids from Calycopteris floribunda. Journal of Natural Products, 62, 1274–1278. DOI: 10.1021/np990182e. http://dx.doi.org/10.1021/np990182e10.1021/np990182eSuche in Google Scholar

[16] Mayer, R. (2004). Five biflavonoids from Calycopteris floribunda (Combretaceae). Phytochemistry, 65, 593–601. DOI: 10.1016/j.phytochem.2004.01.001. http://dx.doi.org/10.1016/j.phytochem.2004.01.00110.1016/j.phytochem.2004.01.001Suche in Google Scholar

[17] Pereira, C. G., Marques, M. O. M., Barreto, A. S., Siani, A. C., Fernandes, E. C., & Meireles, M. A. A. (2004). Extraction of indole alkaloids from Tabernaemontana catharinensis using supercritical CO2+ethanol: an evaluation of the process variables and the raw material origin. The Journal of Supercritical Fluids, 30, 51–61. DOI: 10.1016/s0896-8446(03)00112-8. http://dx.doi.org/10.1016/S0896-8446(03)00112-810.1016/S0896-8446(03)00112-8Suche in Google Scholar

[18] Pereira, C. G., & Meireles, M. A. A. (2010). Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3, 340–372. DOI: 10.1007/s11947-009-0263-2. http://dx.doi.org/10.1007/s11947-009-0263-210.1007/s11947-009-0263-2Suche in Google Scholar

[19] Pick, A., Müller, H., Mayer, R., Haenisch, B., Pajeva, I. K., Weigt, M., Bönisch, H., Müller, C. E., & Wiese, M. (2011). Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorganic & Medicinal Chemistry, 19, 2090–2102. DOI: 10.1016/j.bmc.2010.12.043. http://dx.doi.org/10.1016/j.bmc.2010.12.04310.1016/j.bmc.2010.12.043Suche in Google Scholar

[20] Rodriguez, E., Vander Velde, G., Mabry, T. J., Subramanian, S. S., & Nair, A. G. R. (1972). Structure of calycopterin. Phytochemistry, 11, 2311–2312. DOI: 10.1016/s0031-9422(00)88396-x. http://dx.doi.org/10.1016/S0031-9422(00)88396-X10.1016/S0031-9422(00)88396-XSuche in Google Scholar

[21] Sovová, H. (1994). Rate of the vegetable oil extraction with supercritical CO2—I. Modelling of extraction curves. Chemical Engineering Science, 49, 409–414. DOI: 10.1016/0009-2509(94)87012-8. http://dx.doi.org/10.1016/0009-2509(94)87012-810.1016/0009-2509(94)87012-8Suche in Google Scholar

[22] Versiani, M. A., Diyabalanage, T., Ratnayake, R., Henrich, C. J., Bates, S. E., McMahon, J. B., & Gustafson, K. R. (2011). Flavonoids from eight tropical plant species that inhibit the multidrug resistance transporter ABCG2. Journal of Natural Products, 74, 262–266. DOI: 10.1021/np100797y. http://dx.doi.org/10.1021/np100797y10.1021/np100797ySuche in Google Scholar PubMed PubMed Central

[23] Wall, M. E., Wani, M. C., Fullas, F., Oswald, J. B., Brown, D. M., Santisuk, T., Reutrakul, V., McPhail, A. T., Farnsworth, N. R., Pezzuto, J. M., Kinghorn, A. D., & Besterman, J. M. (1994). Plant antitumor agents. 31.1. The calycopterones, a new class of biflavonoids with novel cytotoxicity in a diverse panel of human tumor cell lines. Journal of Medicinal Chemistry, 37, 1465–1470. DOI: 10.1021/jm00036a012. http://dx.doi.org/10.1021/jm00036a01210.1021/jm00036a012Suche in Google Scholar PubMed

[24] Wang, X. J., Liu, J. J., Yuan, Y., & Li, X. (2009). Extracting technology of volatile oil from leaf of Calycopteris floribunda by steam distillation. Applied Chemical Industry, 38, 64–65. Suche in Google Scholar

[25] Wang, X., Liu, J., Li, X., & Ren, N. (2008). NaNO2-Al(NO3)3 spectrophotometric determination of total flavonoids in Calycopteris floribunda leaves. Guangdong Chemical Industry, 2008(11), 127–130. Suche in Google Scholar

[26] Yang, C., Xu, Y. R., & Yao, W. X. (2002). Extraction of pharmaceutical components from Ginkgo biloba leaves using supercritical carbon dioxide. Journal of Agricultural and Food Chemistry, 50, 846–849. DOI: 10.1021/jf010945f. http://dx.doi.org/10.1021/jf010945f10.1021/jf010945fSuche in Google Scholar PubMed

[27] Yusuf, M., Chowdhury, J. U., Wahab, M. A., & Begum, J. (1994). Medicinal plants of Bangladesh. Dhaka, Bangladesh: Bangladesh Council of Scientific and Industrial Research. Suche in Google Scholar

[28] Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49, 5165–5170. DOI: 10.1021/jf010697n. http://dx.doi.org/10.1021/jf010697n10.1021/jf010697nSuche in Google Scholar PubMed

Published Online: 2013-11-15
Published in Print: 2014-3-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Analytical protocol for investigation of zinc speciation in plant tissue
  2. Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
  3. Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
  4. Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
  5. Determination of limiting current density for different electrodialysis modules
  6. Dyeing of multiple types of fabrics with a single reactive azo disperse dye
  7. Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
  8. Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
  9. Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
  10. Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
  11. Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
  12. Total synthesis of cannabisin F
  13. Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
  14. Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
  15. DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
  16. Efficient thioacetalisation of carbonyl compounds
  17. Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0451-4/pdf?lang=de
Button zum nach oben scrollen