Startseite Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt

  • Adem Asan EMAIL logo , Muberra Andac , Ibrahim Isildak und Nihat Tinkilic
Veröffentlicht/Copyright: 30. Juni 2008
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A highly sensitive and very simple spectrophotometric flow-injection analysis (FIA) method for the determination of iron(III) at low concentration levels is presented. The method is based on the measurement of absorbance intensity of the red complex at 410 nm formed by iron(III) and diphenylamine-4-sulfonic acid sodium salt (DPA-4-SA). It is a simple, highly sensitive, fast, and low cost alternative method using the color developing reagent DPA-4-SA in acetate buffer at pH 5.50 and the flow-rate of 1 mL min−1 with the sample throughput of 60 h−1. The method provided a linear determination range between 5 μg L−1 and 200 μg L−1 with the detection limit (3S) of 1 μg L−1 of iron(III) using the injection volume of 20 μL. FIA variables influencing the system performance were optimized. The amount of iron(III) and total iron in river and seawater samples was successfully determined. Repeatability of the measurements was satisfactory at the relative standard deviation of 3.5 % for 5 determinations of 10 μg L−1 iron(III). The accuracy of the method was evaluated using the standard addition method and checked by the analysis of the certified material Std Zn/Al/Cu 43 XZ3F.

[1] Alonso, J., Bartroli, J., Valle, M. D., & Barber, R. (1989). Sandwich techniques in flow-injection analysis Part 2. Simultaneous determination of iron(II) and total iron. Analytica Chimica Acta, 219, 345–350. DOI:10.1016/S0003-2670(00)80368-2. http://dx.doi.org/10.1016/S0003-2670(00)80368-210.1016/S0003-2670(00)80368-2Suche in Google Scholar

[2] Ampan, P., Lapanantnoppakhum, S., Sooksamiti, P., Jakmunee, J., Hartwell, S. K., Jayasvati, S., Christian, G. D., & Grudpan, K. (2002). Determination of trace iron in beer using flow injection systems with in-valve column and bead injection. Talanta, 58, 1327–1334. DOI:10.1016/S0039-9140(02)00446-0. http://dx.doi.org/10.1016/S0039-9140(02)00446-010.1016/S0039-9140(02)00446-0Suche in Google Scholar

[3] Araujo, A. N., Gracia, J., Lima, J. L. F. C., Poch, M., Luica, M., & Saraiva, M. F. S. (1997). Colorimetric determination of iron in infant fortified formulas by sequential injection analysis. Fresenius’ Journal of Analytical Chemistry, 357, 1153–1156. DOI: 10.1007/s002160050322. http://dx.doi.org/10.1007/s00216005032210.1007/s002160050322Suche in Google Scholar

[4] Asan, A., Andac, M., & Isildak, I. (2003). Flow-injection spectrophotometric determination of nanogram levels of iron(III) with N, N-dimethylformamide. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry, 19, 1033. DOI: 10.2116/analsci.19.1033-1036. Suche in Google Scholar

[5] Bruno, H. A., Andrade, F. J., Luna, P. C., & Tudino, M. B. (2002). Kinetic control of reagent dissolution for the flow injection determination of iron at trace levels. Analyst, 127, 990–994. DOI: 10.1039/b200548b. http://dx.doi.org/10.1039/b200548b10.1039/b200548bSuche in Google Scholar

[6] Chen, J.-Q., Gao, W., & Song, J.-F. (2006). Flow-injection determination of iron(III) in soil by biamperometry using two independent redox couples. Sensors and Actuators B, 113, 194–200. DOI: 10.1016/j.snb.2005.02.047. http://dx.doi.org/10.1016/j.snb.2005.02.04710.1016/j.snb.2005.02.047Suche in Google Scholar

[7] Currie, L. A. (1995). Nomenclature ın evaluatıon of analytıcal methods ıncludıng detectıon and quantıfıcatıon capabılıtıes (IUPAC Recommendations 1995). Pure and Applied Chemistry, 67, 1699–1723. http://dx.doi.org/10.1351/pac19956710169910.1351/pac199567101699Suche in Google Scholar

[8] Ensafi, A. A., Chamjangali, M. A., & Mansour, H. R. (2004). Sequential determination of iron(II) and iron(III) in pharmaceutical by flow-injection analysis with spectrophotometric detection. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry, 20, 645–650. DOI: 10.2116/analsci.20.645. 10.2116/analsci.20.645Suche in Google Scholar

[9] Guo, T., & Baasner, J. (1993). Determination of mercury in urine by flow-injection cold vapour atomic absorption spectrometry. Analytica Chimica Acta, 278, 189–196. DOI: 10.1016/0003-2670(93)80096-4. http://dx.doi.org/10.1016/0003-2670(93)80096-410.1016/0003-2670(93)80096-4Suche in Google Scholar

[10] Kass, M., & Ivaska, A. (2002). Spectrophotometric determination of iron(III) and total iron by sequential injection analysis technique. Talanta, 58, 1131–1137. DOI: 10.1016/S0039-9140(02)00439-3. http://dx.doi.org/10.1016/S0039-9140(02)00439-310.1016/S0039-9140(02)00439-3Suche in Google Scholar

[11] Lunvongsa, S., Takayanagi, T., Oshima, M., & Motomizu, S. (2006a). Novel catalytic oxidative coupling reaction of N, N-dimethyl-p-phenylenediamine with 1,3-phenylenediamine and its applications to the determination of copper and iron at trace levels by flow injection technique. Analytica Chimica Acta, 576, 261–269. DOI: 10.1016/j.aca.2006.06.011. http://dx.doi.org/10.1016/j.aca.2006.06.01110.1016/j.aca.2006.06.011Suche in Google Scholar PubMed

[12] Lunvongsa, S., Oshima, M., & Motomizu, S. (2006b). Determination of total and dissolved amount of iron in water samples using catalytic spectrophotometric flow injection analysis. Talanta, 68, 969–973. DOI: 10.1016/j.talanta.2005.06.067. http://dx.doi.org/10.1016/j.talanta.2005.06.06710.1016/j.talanta.2005.06.067Suche in Google Scholar

[13] Mulaudzi, L. V., van Standen, J. F., & Stefan, R. J. (2002). On-line determination of iron(II) and iron(III) using a spectrophotometric sequential injection system. Analytica Chimica Acta, 467, 35–49. DOI: 10.1016/S0003-2670(02)00128-9. http://dx.doi.org/10.1016/S0003-2670(02)00128-910.1016/S0003-2670(02)00128-9Suche in Google Scholar

[14] Müller, H., Müller, V., & Hansen, E. H. (1990). Simultaneous differential rate determination of iron(II) and iron(III) by flow-injection analysis. Analytica Chimica Acta, 230, 113–123. DOI: 10.1016/S0003-2670(00)82768-3. http://dx.doi.org/10.1016/S0003-2670(00)82768-310.1016/S0003-2670(00)82768-3Suche in Google Scholar

[15] Pojanagaron, T., Watanesk, S., Rattanaphani, V., & Liawruangrath, S. (2002). Reverse flow injection spectrophotometric determination of iron(III) using norfloxacin. Talanta, 58, 1293–1300. DOI: 10.1016/S0039-9140(02)00420-4. http://dx.doi.org/10.1016/S0039-9140(02)00420-410.1016/S0039-9140(02)00420-4Suche in Google Scholar

[16] Pons, C., Forteza, R., & Cerdà, V. (2005b). Multi-pumping flow system for the determination, solid-phase extraction and speciation analysis of iron. Analytica Chimica Acta, 550, 33–39. DOI: 10.1016/j.aca.2005.06.072. http://dx.doi.org/10.1016/j.aca.2005.06.07210.1016/j.aca.2005.06.072Suche in Google Scholar

[17] Pons, C., Forteza, R., & Cerdà, V. (2005a). The use of anion-exchange disks in an optrode coupled to a multi-syringe flow-injection system for the determination and speciation analysis of iron in natural water samples. Talanta, 66, 210–217. DOI: 10.1016/j.talanta.2004.11.009. http://dx.doi.org/10.1016/j.talanta.2004.11.00910.1016/j.talanta.2004.11.009Suche in Google Scholar

[18] Pulido-Tofino, P., Barrero-Moreno, J. M., & Perez-Conde, M. C. (2000). A flow-through fluorescent sensor to determine Fe(III) and total inorganic iron. Talanta, 51, 537–545. DOI: 10.1016/S0039-9140(99)00308-2. http://dx.doi.org/10.1016/S0039-9140(99)00308-210.1016/S0039-9140(99)00308-2Suche in Google Scholar

[19] Reguera, M. I. P., Carmona, I. O., & Diaz, A. M. (1997). Spectrophotometric determination of iron with ferrozine by flow-injection analysis. Talanta, 44, 1793–1801. DOI: 10.1016/S0039-9140(97)00050-7. http://dx.doi.org/10.1016/S0039-9140(97)00050-710.1016/S0039-9140(97)00050-7Suche in Google Scholar

[20] Saitoh, K., Hasebe, T., Teshima, N., Kurihara, M., & Kawashima, T. (1998). Simultaneous flow-injection determination of iron(II) and total iron by micelle enhanced luminol chemiluminescence. Analytica Chimica Acta, 376, 247–254. DOI: 10.1016/S0003-2670(98)00539-X. http://dx.doi.org/10.1016/S0003-2670(98)00539-X10.1016/S0003-2670(98)00539-XSuche in Google Scholar

[21] Teixeira, L. S. G., & Rocha, F. R. P. (2007). A green analytical procedure for sensitive and selective determination of iron in water samples by flow-injection solidphase spectrophotometry. Talanta, 71, 1507–1511. DOI: 10.1016/j.talanta.2006.07.025. http://dx.doi.org/10.1016/j.talanta.2006.07.02510.1016/j.talanta.2006.07.025Suche in Google Scholar PubMed

[22] Tesfaldet, Z. O., van Standen, J. F., & Stefan, R. J. (2004). Sequential injection spectrophotometric determination of iron as Fe(II) in multi-vitamin preparations using 1,10-phenanthroline as complexing agent. Talanta, 64, 1189–1195. DOI: 10.1016/j.talanta.2004.02.044. http://dx.doi.org/10.1016/j.talanta.2004.02.04410.1016/j.talanta.2004.02.044Suche in Google Scholar

[23] Themelis, D. G., Tzanavaras, P. D., Kika, F. S., & Sofoniou, M. C. (2001). Flow-injection manifold for the simultaneous spectrophotometric determination of Fe(II) and Fe(III) using 2,2′-dipyridyl-2-pyridylhydrazone and a single-line double injection approach. Fresenius’ Journal of Analytical Chemistry, 371, 364–368. DOI: 10.1007/s00216 0100930. http://dx.doi.org/10.1007/s002160100930Suche in Google Scholar

[24] Udnan, Y., Jakmunee, J., Jayasavati, S., Christian, G. S., Synovec, R. E., & Grudpan, K., (2004). Cost-effective flow injection spectrophotometric assay of iron content in pharmaceutical preparations using salicylate reagent. Talanta, 64, 1237–1240. DOI: 10.1016/j.talanta.2004.03.067. http://dx.doi.org/10.1016/j.talanta.2004.03.06710.1016/j.talanta.2004.03.067Suche in Google Scholar

[25] van Staden, J. F., & Kluever, L. G. (1998). Determination of total iron in ground waters and multivitamin tablets using a solid-phase reactor with tiron immobilised on amberlite ion-exchange resin in a flow injection system. Fresenius’ Journal of Analytical Chemistry, 362, 319–323. DOI: 10.1007/s002160051081. http://dx.doi.org/10.1007/s00216005108110.1007/s002160051081Suche in Google Scholar

[26] Weeks, D. A., & Bruland, K. W. (2002). Improved method for shipboard determination of iron in seawater by flow injection analysis. Analytica Chimica Acta, 453, 21–32. DOI: 10.1016/S0003-2670(01)01480-5. http://dx.doi.org/10.1016/S0003-2670(01)01480-510.1016/S0003-2670(01)01480-5Suche in Google Scholar

[27] Yamamura, S. S., & Sikes, J. H. (1966). Use of citrate-EDTA masking for selective determination of iron with 1,10-phenanthroline. Analytical Chemistry, 38, 793–795. DOI: 10.1021/ac60238a037. http://dx.doi.org/10.1021/ac60238a03710.1021/ac60238a037Suche in Google Scholar

[28] Yegorov, D. Y., Kozlov, A. V., Azizova, O. A., & Vladimirov, Y. A. (1993). Simultaneous determination of Fe(III) and Fe(II) in water solutions and tissue homogenates using desferal and 1,10-phenanthroline. Free Radical Biology & Medicine, 15, 565–574. DOI: 10.1016/0891-5849(93)90158-Q. http://dx.doi.org/10.1016/0891-5849(93)90158-Q10.1016/0891-5849(93)90158-QSuche in Google Scholar

Published Online: 2008-6-30
Published in Print: 2008-8-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
  2. Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
  3. Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
  4. Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
  5. Comparison of different technologies for alginate beads production
  6. Design and economics of industrial production of fructooligosaccharides
  7. Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
  8. 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
  9. Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
  10. Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
  11. Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
  12. Preparation and modification of collagen-based porous scaffold for tissue engineering
  13. Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
  14. Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
  15. Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
  16. Extraction and analysis of ellagic acid from novel complex sources
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0048-5/pdf?lang=de
Button zum nach oben scrollen