Abstract
Protolytic properties of (+)-(S)-2-(6-methoxynaphthalen-2-yl)propanoic acid (naproxen), 2-(3-benzoylphenyl)propionic acid (ketoprofen), 4-chloro-N-(2-furylmethyl)-5-sulfamoylanthranilic acid (furosemide), and N-(2,3-dimethylphenyl)anthranilic acid (mefenamic acid) in “oil-in-water” emulsions stabilized by surfactants were studied. The procedures for alkalimetric determination of naproxen, ketoprofen, furosemide, and mefenamic acid in emulsion media with indication of the equivalence point pH-metrically and with the use of indicators were proposed.
[1] Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., & Pérez-Maseda, C. (1998). Chiral and nonchiral determination of ketoprofen in pharmaceuticals by capillary zone electrophoresis derivatives. Journal of Chromatography A, 799, 301–307. DOI: 10.1016/S0021-9673(97)01040-6. http://dx.doi.org/10.1016/S0021-9673(97)01040-610.1016/S0021-9673(97)01040-6Search in Google Scholar
[2] British Pharmacopoeia. (1998). London: HMSO. Search in Google Scholar
[3] Damiani, P., Bearzotti, M., & Cabezon, M. A. (2002). Spectrofluorometric determination of naproxen in tablets. Journal of Pharmaceutical & Biomedical Analysis, 29, 229–238. DOI: 10.1016/S0731-7085(02)00063-8. http://dx.doi.org/10.1016/S0731-7085(02)00063-810.1016/S0731-7085(02)00063-8Search in Google Scholar
[4] Dinc, E., Yucesoy, C., & Onur, F. (2002). Simultaneous spectrophotometric determination of mefenamic acid and paracetamol in a pharmaceutical preparation using ratio spectra derivative spectrophotometry and chemometric methods. Journal of Pharmaceutical & Biomedical Analysis, 28, 1091–1100. DOI: 10.1016/S0731-7085(02)00031-6. http://dx.doi.org/10.1016/S0731-7085(02)00031-610.1016/S0731-7085(02)00031-6Search in Google Scholar
[5] European Pharmacopoeia. (1997). Strasbourg: Council of Europe. Search in Google Scholar
[6] García, S., Sánchez-Pedreńo, C., Albero, I., & García, C. (2001). Flow-injection spectrophotometric determination of diclofenac or mefenamic acid in pharmaceuticals. Microchimica Acta, 136, 67–71. DOI: 10.1007/s006040170069. http://dx.doi.org/10.1007/s00604017006910.1007/s006040170069Search in Google Scholar
[7] Hinze, W. L. (1994). Organized assemblies in chemical analysis. Greenwich: JAI Press. Search in Google Scholar
[8] Ioannou, P. C., Rusakova, N. V., Andrikopoulou, D. A., Glynou, K. M., & Tzompanaki, G. M. (1998). Spectrofluorimetric determination of anthranilic acid derivatives based on terbium sensitized fluorescence. Analyst, 123, 2839–2843. DOI: 10.1039/a806093b. http://dx.doi.org/10.1039/a806093b10.1039/a806093bSearch in Google Scholar
[9] Kholin, Yu. V. (2000). A quantitative physicochemical analysis of complexation in solutions and on the surface of complexing silicas: Meaningful models, mathematical methods and their application. Kharkov: Folio. Search in Google Scholar
[10] Kulichenko, S. A, & Shevchenko, G. M (2003a). Triton X-100-stabilized “oil-in-water” emulsions as suitable media for alkalimetric determination of hydrophobic organic acids. Analytical and Bioanalytical Chemistry, 375, 255–258. DOI: 10.1007/s00216-002-1647-6. 10.1007/s00216-002-1647-6Search in Google Scholar
[11] Kulichenko, S. A., & Shevchenko, A. M. (2003b). Use of surfactant-stabilized emulsions for the alkalimetric determination of indometacin. Journal of Analytical Chemistry, 58, 385–389. DOI: 10.1023/A:1023214202358. http://dx.doi.org/10.1023/A:102321420235810.1023/A:1023214202358Search in Google Scholar
[12] Kulichenko, S. A., Fesenko, S. A., & Fesenko, N. I. (2001). Color indicator system for acid-base titration in aqueous micellar solutions of the cationic surfactant tridecylpyridinium bromide. Journal of Analytical Chemistry, 56, 1002–1007. DOI: 10.1023/A:1012592305395. http://dx.doi.org/10.1023/A:101259230539510.1023/A:1012592305395Search in Google Scholar
[13] Kulichenko, S. A., & Fessenko, S. O. (2003). Determination of ibuprofen and novocaine hydrochloride with the use of water-micellar solutions of surfactants. Analytica Chimica Acta, 481, 149–153. DOI: 10.1016/S0003-2670(03)00068-0. http://dx.doi.org/10.1016/S0003-2670(03)00068-010.1016/S0003-2670(03)00068-0Search in Google Scholar
[14] Lalljie, S. P. D., Barroso, M. B., Steenackers, D., & Alonso, R. M. (1997). Micellar electrokinetic chromatography as a fast screening method for the determination of the doping agents furosemide and piretanide in urine. Journal of Chromatography B, 688, 71–78. DOI: 10.1016/S0378-4347(97)88057-7. http://dx.doi.org/10.1016/S0378-4347(97)88057-710.1016/S0378-4347(97)88057-7Search in Google Scholar
[15] Lenik, J., Dumkiewicz, R., Wardak, C., & Marczewska, B. (2002). Naproxen ion-selective electrode and its application to pharmaceutical analysis. Acta Poloniae Pharmaceutica — Drug Research, 59, 171–176. Search in Google Scholar
[16] Pfüller, U. (1986). Mizellen-Vesikel-Mikroemulsionen Tensidassoziate und ihre Anwendung in Analytik und Biochemie. Berlin: Springer Verlag. 10.1007/978-3-642-71584-6Search in Google Scholar
[17] Pramauro, E., & Pelezetti, E. (1996). Surfactants in analytical chemistry. Amsterdam: Elsevier. Search in Google Scholar
[18] Rodriguez, I., Quintana, J. B., Carpinteiro, J., Carro, A. M., Lorenzo, R. A., & Cela, R. (2003). Determination of acidic drugs in sewage water by gas chromatography mass spectrometry as tert-butyldimethylsilyl derivatives. Journal of Chromatography A, 985, 265–274. DOI: 10.1016/S0021-9673(02)01528-5. http://dx.doi.org/10.1016/S0021-9673(02)01528-510.1016/S0021-9673(02)01528-5Search in Google Scholar
[19] Sánchez-Dasi, M. J., Garrigues, S., Cervera, M. L., & de la Guardia, M. (1998). On-line solvent recycling: a tool for the development of clean analytical chemistry in flow injection Fourier transform infrared spectrometry. Determination of ketoprofen. Analytica Chimica Acta, 361, 253–260. DOI: 10.1016/S0003-2670(98)00027-0. http://dx.doi.org/10.1016/S0003-2670(98)00027-010.1016/S0003-2670(98)00027-0Search in Google Scholar
[20] Savvin, S. B., Chernova, R. K., & Shtykov, S. N. (1991). Poverkhnostno-aktivnye Veshchestva (Surfactants). Moscow: Nauka. Search in Google Scholar
[21] Segura Carretero, A., Cruces Blanco, C., Ramírez García, M. I., Cańabate Díaz, B., & Fernández Gutiérrez, A. (1999). Simple and rapid determination of the drug naproxen in pharmaceutical preparations by heavy atom-induced room temperature phosphorescence. Talanta, 50, 401–407. DOI: 10.1016/S0039-9140(99)00126-5. http://dx.doi.org/10.1016/S0039-9140(99)00126-510.1016/S0039-9140(99)00126-5Search in Google Scholar
[22] Sevillano-Cabeza, A., Campíns-Falcó, P., & Serrador-García, M. (1997). Extractive-spectrophotometric determination of furosemide with sodium 1,2-naphthoquinone-4-sulfonate in pharmaceuticals formulations. Analytical Letters, 30, 91–107. DOI: 10.1080/00032719708002293. 10.1080/00032719708002293Search in Google Scholar
[23] Shevchenko, A. M., & Kulichenko, S. A. (2005). System of indicators for acid-base titration in surfactant-stabilized emulsions. Journal of Analytical Chemistry, 60, 336–341. DOI: 10.1007/s10809-005-0094-x. http://dx.doi.org/10.1007/s10809-005-0094-x10.1007/s10809-005-0094-xSearch in Google Scholar
[24] Sun, Y., Takaba, K., Kido, H., Nakashima, M. N., & Nakashima, K. (2003). Simultaneous determination of arylpropionic acidic non-steroidal anti-inflammatory drugs in pharmaceutical formulations and human plasma by HPLC with UV detection. Journal of Pharmaceutical & Biomedical Analysis, 30, 1611–1619. DOI: 10.1016/S0731-7085(02)00549-6. http://dx.doi.org/10.1016/S0731-7085(02)00549-610.1016/S0731-7085(02)00549-6Search in Google Scholar
[25] Ukrainian Official Standard (YEAR), Pharmacopoeia manuscript N42-1792-90. Search in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
- Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
- Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
- Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
- Comparison of different technologies for alginate beads production
- Design and economics of industrial production of fructooligosaccharides
- Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
- 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
- Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
- Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
- Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
- Preparation and modification of collagen-based porous scaffold for tissue engineering
- Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
- Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
- Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
- Extraction and analysis of ellagic acid from novel complex sources
Articles in the same Issue
- Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
- Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
- Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
- Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
- Comparison of different technologies for alginate beads production
- Design and economics of industrial production of fructooligosaccharides
- Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
- 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
- Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
- Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
- Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
- Preparation and modification of collagen-based porous scaffold for tissue engineering
- Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
- Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
- Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
- Extraction and analysis of ellagic acid from novel complex sources