Abstract
Nanocrystalline titanium dioxide particles with anatase structure and high thermal stability have been synthesized using the basic sol-gel method. The particle size and morphology were refined under hydrothermal conditions in the presence of different concentrations of tetramethylammonium hydroxide (TMAH) at 210°C and 230°C. XRD and TEM analysis showed that the TiO2 particles obtained were homogeneous and monodispersive at low contents of TMAH. All intense peaks, clearly observed in the XRD patterns, were assigned to the anatase phase and no rutile phase was observed. At high contents of TMAH, nanoscale small (10–30 nm) and larger (>100 nm) TiO2 particles were one-pot synthesized. The nanocrystalline TiO2 particles synthesized by this method have good thermal stability. With the sintering temperature of up to 650°C, all the XRD peaks maintained good agreement with the anatase reference data.
[1] Barbé, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., & Gräzel, M. (1997). Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of American Ceramic Society, 80, 3157–3171. DOI:10.1111/j.1151-2916.1997.tb03245.x. http://dx.doi.org/10.1111/j.1151-2916.1997.tb03245.x10.1111/j.1151-2916.1997.tb03245.xSearch in Google Scholar
[2] Burnside, S. D., Shklover, V., Barbé, C., Comte, P., Arendse, F. Brooks, K., & Grätzel, M. (1998). Self-organization of TiO2 nanoparticles in thin films. Chemistry of Materials, 10, 2419–2425. DOI: 10.1021/cm980702b. http://dx.doi.org/10.1021/cm980702b10.1021/cm980702bSearch in Google Scholar
[3] Chemseddine, A., & Moritz, T. (1999). Nanostructuring titania: control over nanocrystal structure, size, shape, and organization. European Journal of Inorganic Chemistry, 1999, 235–245. DOI: 10.1002/(SICI)1099-0682(19990202)1999:2〈235:: AIDEJIC235〉 3.0.CO;2-N. Search in Google Scholar
[4] Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemical Photobiology A: Chemistry, 164, 3–14. DOI:10.1016/j.jphotochem.2004.02.023. http://dx.doi.org/10.1016/j.jphotochem.2004.02.02310.1016/j.jphotochem.2004.02.023Search in Google Scholar
[5] Harizanov, O., & Harizanova, A. (2000). Development and investigation of sol-gel solutions for the formation of TiO2 coatings. Solar Energy Materials and Solar Cells, 63, 185–195. DOI: 10.1016/S0927-0248(00)00008-8. http://dx.doi.org/10.1016/S0927-0248(00)00008-810.1016/S0927-0248(00)00008-8Search in Google Scholar
[6] Hore, S., Palomares, E., Smit, H., Bakker, N. J., Comte, P., Liska, P., Thampi, K. R., Kroon, J. M., Hinsch, A., & Durrant, J. R. (2005). Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells. Journal of Materials Chemistry, 15, 412–418. DOI: 10.1039/b407963a. http://dx.doi.org/10.1039/b407963a10.1039/b407963aSearch in Google Scholar
[7] Hu, L. H., Dai, S. Y., & Wang, K. J. (2003). Structural transformation of nanocrystalline titania grown by sol-gel technique and the growth kinetics of crystallites. Acta Physica Sinica, 52, 2135–2139 (in Chinese). Search in Google Scholar
[8] Koelsch, M., Cassaignon, S., Minh, C. T. T., Guillemoles J. F., & Jolivet, J. P. (2004). Electrochemical comparative study of titania (anatase, brookite, and rutile) nanoparticles synthesized in aqueous medium. Thin Solid Films, 451–452, 86–92. DOI: 10.1016/j.tsf.2003.11.150. http://dx.doi.org/10.1016/j.tsf.2003.11.15010.1016/j.tsf.2003.11.150Search in Google Scholar
[9] Nakade, S., Matsuda, M., Kambe, S., Saito, Y., Kitamura, T., Sakata, T., Wada, Y., Mori, H., & Yanagida, S. (2002). Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. Journal of Physical Chemistry B, 106, 10004–10010. DOI: 10.1021/jp020051d. http://dx.doi.org/10.1021/jp020051d10.1021/jp020051dSearch in Google Scholar
[10] Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., & Grätzel, M. (1993). Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society, 115, 6382–6390. DOI: 10.1021/ja00067a063. http://dx.doi.org/10.1021/ja00067a06310.1021/ja00067a063Search in Google Scholar
[11] O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737–740. DOI: 10.1038/353737a0. http://dx.doi.org/10.1038/353737a010.1038/353737a0Search in Google Scholar
[12] Park, N. G., Schlichthörl, G., van de Lagemaat, J., Cheong, H. M., Mascarenhas, A., & Frank, A. J. (1999). Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4. Journal of Physical Chemistry B, 103, 3308–3314. DOI: 10.1021/jp984529i. http://dx.doi.org/10.1021/jp984529i10.1021/jp984529iSearch in Google Scholar
[13] Park, N. G., van de Lagemaat, J., & Frank, A. J. (2000). Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. Journal of Physical Chemistry B, 104, 8989–8994. DOI: 10.1021/jp994365l. http://dx.doi.org/10.1021/jp994365l10.1021/jp994365lSearch in Google Scholar
[14] Uchida, S., Tomiha, M., Masaki, N., Miyazawa, A., & Takizawa, H. (2004). Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28 GHz microwave irradiation. Solar Energy Materials and Solar Cells, 81, 135–139. DOI: 10.1016 /j.solmat.2003.08.020. http://dx.doi.org/10.1016/j.solmat.2003.08.02010.1016/j.solmat.2003.08.020Search in Google Scholar
[15] Wang, R. B., Dai, S. Y., & Wang, K. J. (2002). The influence of pH to prepare TiO2 by sol-gel and the characteristics. Journal of Functional Materials, 33, 296–297. Search in Google Scholar
[16] Wang, P., Zakeeruddin, S. M., Comte, P., Charvet, R., Humphry-Baker, R., & Grätzel, M. (2003). Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. Journal of Physical Chemistry B, 107, 14336–14341. DOI: 10.1021/jp0365965. http://dx.doi.org/10.1021/jp036596510.1021/jp0365965Search in Google Scholar
[17] Wang, Z.-S., Kawauchi, H., Kashima, T., & Arakawa, H. (2004). Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 248, 1381–1389. DOI: 10.1016 /j.ccr.2004.03.006. http://dx.doi.org/10.1016/j.ccr.2004.03.00610.1016/j.ccr.2004.03.006Search in Google Scholar
[18] Wang, Z.-S., Yamaguchi, T., Sugihara, H., & Arakawa, H. (2005). Significant efficiency improvement of the black dyesensitized solar cell through protonation of TiO2 films. Langmuir, 21, 4272–4276. DOI: 10.1021/la050134w. http://dx.doi.org/10.1021/la050134w10.1021/la050134wSearch in Google Scholar PubMed
[19] Yang, J., Li, D., Wu, D. H., Yang, X. J., Lu, L. D., & Wang, X. (2001). Preparation of doped nanocrystalline TiO2 and microstructural control by stearic acid sol-gel method. Journal of Inorganic Materials, 16, 550–554. Search in Google Scholar
[20] Zukalová, M., Zukal, A., Kavan, L. Nazeeruddin, M. K., Liska, P., & Grätzel, M. (2005). Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dyesensitized solar cells. Nano Letters, 5, 1789–1792. DOI: 10.1021/nl051401l. http://dx.doi.org/10.1021/nl051401l10.1021/nl051401lSearch in Google Scholar PubMed
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
- Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
- Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
- Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
- Comparison of different technologies for alginate beads production
- Design and economics of industrial production of fructooligosaccharides
- Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
- 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
- Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
- Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
- Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
- Preparation and modification of collagen-based porous scaffold for tissue engineering
- Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
- Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
- Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
- Extraction and analysis of ellagic acid from novel complex sources
Articles in the same Issue
- Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
- Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
- Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
- Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
- Comparison of different technologies for alginate beads production
- Design and economics of industrial production of fructooligosaccharides
- Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
- 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
- Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
- Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
- Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
- Preparation and modification of collagen-based porous scaffold for tissue engineering
- Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
- Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
- Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
- Extraction and analysis of ellagic acid from novel complex sources