Abstract
A new vic-dioxime ligand, N,N′-bis(aminopyreneglyoxime) (LH2), and its copper(II), nickel(II) and cobalt(II) metal complexes were synthesized and characterized by elemental analyses, IR, UVVIS and 1H and 13C NMR spectra (for the ligand). Mononuclear complexes were synthesized by a reaction of ligand (LH2) and salts of Co(II), Ni(II), and Cu(II) in ethanol. The complexes have the metal-ligand ratio of 1: 2 and metals are coordinated by N,N′ atoms of vicinal dioximes. The ligand acts in a polydentate fashion bending through nitrogen atoms in the presence of a base, as do most vic-dioximes. Detection of a H-bonding in the Co(II), Ni(II), and Cu(II) complexes by IR revealed the square-planar MN4 coordination of mononuclear complexes. Fluorescent properties of the ligand and its complexes arise from pyrene units conjugated with a vic-dioxime moiety. Fluorescence emission spectra of the ligand showed a drastic decrease in its fluorescence intensity upon metal binding. The electrochemical properties of the complexes were studied by the cyclic voltammetry technique. The nickel complex displayed an irreversible oxidation process while the copper complex exhibited a quasi-reversible oxidation and reduction processes based on the copper Cu(II)/Cu(III) and Cu(II)/Cu(I) couples, respectively.
[1] Ali, S. A., Soliman, A. A., Aboaly, M. M., & Ramadan, R. M. (2002). Chromium, molybdenum and ruthenium complexes of 2-hydroxyacetophenone Schiff bases. Journal of Coordination Chemistry, 55, 1161–1170. DOI: 10.1080/0095897021000023509. http://dx.doi.org/10.1080/009589702100002350910.1080/0095897021000023509Suche in Google Scholar
[2] Amann, N., Pandurski, E., Fiebig, T., & Wagenknecht, H. A. (2002). A model nucleoside for electron injection into DNA: 5-pyrenyl-2′-deoxyribose. Angewandte Chemie International Edition, 41, 2978–2980. DOI: 10.1002/1521-3773(20020816)41:16〈2978::AID-ANIE2978〉3.0.CO;2-5. http://dx.doi.org/10.1002/1521-3773(20020816)41:16<2978::AID-ANIE2978>3.0.CO;2-510.1002/1521-3773(20020816)41:16<2978::AID-ANIE2978>3.0.CO;2-5Suche in Google Scholar
[3] Bard, A. J., & Faulkner, L. R. (Eds.) (2001). Electrochemical methods: Fundamentals and applications (2nd ed.). New York: John Wiley & Sons. Suche in Google Scholar
[4] Boyer, J. H. (1980). Increasing the index of covalent oxygen bonding at nitrogen attached to carbon. Chemical Reviews, 80, 495–561. DOI: 10.1021/cr60328a002. http://dx.doi.org/10.1021/cr60328a00210.1021/cr60328a002Suche in Google Scholar
[5] Chakravorty, A. (1974). Structural chemistry of transition metals complexes of oximes. Coordination Chemical Reviews, 13, 1–46. DOI: 10.1016/S0010-8545(00)80250-7. http://dx.doi.org/10.1016/S0010-8545(00)80250-710.1016/S0010-8545(00)80250-7Suche in Google Scholar
[6] Cotton, F. A., & Wilkinson, G. (1988). Advanced Inorganic Chemistry (5th ed.). New York: John Wiley & Sons. (pp. 725–743). Suche in Google Scholar
[7] Gelir, A., Yilmaz, I., & Yilmaz, Y. (2007). In situ monitoring of the synthesis of a pyranine-substituted phthalonitrile derivative via the steady-state fluorescence technique. Journal of Physical Chemistry B, 111, 478–484. DOI: 10.1021/jp064462w. http://dx.doi.org/10.1021/jp064462w10.1021/jp064462wSuche in Google Scholar
[8] Grabowski, Z. R., Rotkiewicz, K., & Rettig, W. (2003). Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chemical Reviews, 103, 3899–4031. DOI: 10.1021/cr940745l. http://dx.doi.org/10.1021/cr940745l10.1021/cr940745lSuche in Google Scholar
[9] Kilic, A., Tas, E., Gumgum, B., & Yilmaz, I. (2006a). Synthesis, spectral characterization and electrochemical properties of new vic-dioxime complexes bearing carboxylate. Transition Metal Chemistry, 31, 645–652. DOI: 10.1007/s11243-006-0043-z. http://dx.doi.org/10.1007/s11243-006-0043-z10.1007/s11243-006-0043-zSuche in Google Scholar
[10] Kilic, A., Tas, E., Gumgum, B., & Yilmaz, I. (2006b). Synthesis, spectroscopic and electrochemical investigations of two vic-dioximes and their mononuclear Ni(II), Cu(II) and Co(II) metal complexes containing morpholine group. Chinese Journal of Chemistry, 24, 1599–1604. DOI: 10.1002/cjoc.200690 299. http://dx.doi.org/10.1002/cjoc.200690299Suche in Google Scholar
[11] Kilic, A., Tas, E., Gumgum, B., & Yilmaz, I. (2007a). The synthesis, spectroscopic and voltametric studies of new metal complexes containing three different vic-dioximes. Journal of Coordination Chemistry, 60, 1233–1246. DOI: 10.1080/00958970601035914. http://dx.doi.org/10.1080/0095897060103591410.1080/00958970601035914Suche in Google Scholar
[12] Kilic, A., Tas, E., Gumgum, B., & Yilmaz, I. (2007b). Three new vic-dioxime ligands: synthesis, characterization, spectroscopy, and redox properties of their mononuclear nickel(II) complexes. Heteroatom Chemistry, 18, 657–663. DOI: 10.1002/hc http://dx.doi.org/10.1002/hc.20357Suche in Google Scholar
[13] Krasnansky, R., & Thomas, J. K. (1994). Aminopyrene as a monitor of vicinal and geminal OH groups on silica. Langmuir, 10, 4551–4553. DOI: 10.1021/la00024a027. http://dx.doi.org/10.1021/la00024a02710.1021/la00024a027Suche in Google Scholar
[14] Kumar, K. N., & Ramesh, R. (2005). Synthesis, luminescent, redox and catalytic properties of Ru(II) carbonyl complexes containing 2N2O donors. Polyhedron, 24, 1885–1892. DOI: 10.1016/j.poly.2005.05.020. http://dx.doi.org/10.1016/j.poly.2005.05.02010.1016/j.poly.2005.05.020Suche in Google Scholar
[15] Lakowicz, J. R. (1983). Principle of fluorescence spectroscopy. New York: Plenum Press. 10.1007/978-1-4615-7658-7Suche in Google Scholar
[16] Li, L., & Mohwald, H. (2004). Photoinduced vectorial charge transfer across walls of hollow microcapsules. Angewandte Chemie International Edition, 43, 360–363. DOI: 10.1002/anie.200352657. http://dx.doi.org/10.1002/anie.20035265710.1002/anie.200352657Suche in Google Scholar
[17] Oguchi, K., Sanui, K., Ogata, N., Takahashi, Y., & Nakada, T. (1990). Relationship between electron sensitivity and chemical structures of polymers as electron-beam resist. 7. electron sensitivity of vinyl-polymers containing pendant 1,3-dioxolan groups. Polymer Engineering and Science, 30, 449–452. DOI: 0.1002/pen.760300804. http://dx.doi.org/10.1002/pen.76030080410.1002/pen.760300804Suche in Google Scholar
[18] Ozkaya, A. R., Okur, A. I., Gül, A., & Bekaroglu, Ö. (1994). Electrochemical studies of tetracrown-ether substituted phthalocyanines in solution. Journal of Coordination Chemistry, 33, 311–318. DOI: 10.1080/00958979408024291. http://dx.doi.org/10.1080/0095897940802429110.1080/00958979408024291Suche in Google Scholar
[19] Ozkaya, A. R., Yilmaz, I., & Bekaroglu, Ö. (1998). Electrochemical and adsorption properties of novel phthalocyanines with four 16-membered diazadithia macrocycles. Journal of Porphyrins and Phthalocyanines. 2, 483–492. DOI: 10.1002/(SICI)1099-1409(199811/12)2:6〈483::AID-JPP79〉3.0.CO;2-Z. http://dx.doi.org/10.1002/(SICI)1099-1409(199811/12)2:6<483::AID-JPP79>3.0.CO;2-Z10.1002/(SICI)1099-1409(199811/12)2:6<483::AID-JPP79>3.0.CO;2-ZSuche in Google Scholar
[20] Pereira, R. V., & Gehlen, M. H. (2006). H-bonding assisted intramolecular charge transfer in 1-aminopyrene derivatives. Chemical Physics Letters, 426, 311–317. DOI: 10.1016/j.cplett.2006.05.109. http://dx.doi.org/10.1016/j.cplett.2006.05.10910.1016/j.cplett.2006.05.109Suche in Google Scholar
[21] Schrauzer, G. N., & Kohnle, J. (1964). Coenzym B12-Modelle. Chemische Berichte, 97, 3056–3064. DOI: 10.1002/cber.19640971114. http://dx.doi.org/10.1002/cber.1964097111410.1002/cber.19640971114Suche in Google Scholar
[22] Singh, R. B., Garg, B. S., & Singh, R. P. (1979). Oximes as spectrophotometric reagents—a review. Talanta, 26, 425–444. DOI: 10.1016/0039-9140(79)80107-1. http://dx.doi.org/10.1016/0039-9140(79)80107-110.1016/0039-9140(79)80107-1Suche in Google Scholar
[23] Smith, P. A. S. (1966). The chemistry of open-chain organic nitrogen compounds (vol. 2). New York: W. A. Benjamin. Suche in Google Scholar
[24] Sumalekshmy, S., & Gopidas, K. R. (2004). Photoinduced intramolecular charge transfer in donor-acceptor substituted tetrahydropyrenes. Journal of Physical Chemistry B, 108, 3705–3712. DOI: 10.1021/jp036043u. http://dx.doi.org/10.1021/jp022549l10.1021/jp036043uSuche in Google Scholar
[25] Tas, E., Aslanoglu, M., Kilic, A., & Kara, Z. (2005). Synthesis, characterization and redox properties of three new vic-dioximes and their nickel(II) metal complexes. Transition Metal Chemistry, 30, 758–764. DOI: 10.1007/s11243-005-6226-1. http://dx.doi.org/10.1007/s11243-005-6226-110.1007/s11243-005-6226-1Suche in Google Scholar
[26] Tas, E., Aslanoglu, M., Kilic, A., & Kara, Z. (2006). Synthesis, spectroscopic and electrochemical studies of copper (II) and cobalt (II) complexes of three unsymmetrıcal vic-dioximes ligands. Journal of Coordination Chemistry, 59, 861–872. DOI: 10.1080/00958970500412206. http://dx.doi.org/10.1080/0095897050041220610.1080/00958970500412206Suche in Google Scholar
[27] Tas, E., Ulusoy, M., Guler, M., & Yilmaz, I. (2004). Synthesis, characterization and redox properties of a new vic-dioxime and its transition metal complexes. Transition Metal Chemistry, 29, 180–184. DOI: 10.1023/B:TMCH.0000019417.35877.b9. http://dx.doi.org/10.1023/B:TMCH.0000019417.35877.b910.1023/B:TMCH.0000019417.35877.b9Suche in Google Scholar
[28] Thomas, T. W., & Underhill, A. E. (1972). Metal-metal interactions in transition-metal complexes containing infinite chains of metal atoms. Chemical Society Reviews, 1, 99–120. DOI: 10.1039/CS9720100099. http://dx.doi.org/10.1039/cs972010009910.1039/CS9720100099Suche in Google Scholar
[29] Tschugaeff, L. (1905). Über ein neues, empfindliches Reagens auf Nickel. Chemische Berichte, 38, 2520–2522. DOI: 10.1002/cber.19050380317. 10.1002/cber.19050380317Suche in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
- Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
- Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
- Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
- Comparison of different technologies for alginate beads production
- Design and economics of industrial production of fructooligosaccharides
- Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
- 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
- Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
- Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
- Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
- Preparation and modification of collagen-based porous scaffold for tissue engineering
- Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
- Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
- Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
- Extraction and analysis of ellagic acid from novel complex sources
Artikel in diesem Heft
- Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
- Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
- Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
- Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
- Comparison of different technologies for alginate beads production
- Design and economics of industrial production of fructooligosaccharides
- Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
- 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
- Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
- Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
- Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
- Preparation and modification of collagen-based porous scaffold for tissue engineering
- Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
- Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
- Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
- Extraction and analysis of ellagic acid from novel complex sources