Startseite Design and economics of industrial production of fructooligosaccharides
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Design and economics of industrial production of fructooligosaccharides

  • Katarína Vaňková EMAIL logo , Zdenka Onderková , Monika Antošová und Milan Polakovič
Veröffentlicht/Copyright: 30. Juni 2008
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A process for industrial production of fructooligosaccharides (FOS’s) based on the conversion of sucrose by immobilized fructosyltransferase (FTase) from the cells of Aureobasidium pullulans CCY 27-1-94 was developed. Particular process operations and conditions were designed employing results of laboratory and semi-pilot scale experiments. The process flowsheet comprised three sections: FTase production, which included fermentation, isolation and purification of the enzyme, FTase immobilization and FOS’s production where a product with a high content of FOS’s was prepared by the removal of glucose, fructose and unreacted sucrose from the reaction mixture using simulated moving-bed chromatography. Two alternative process flowsheets were proposed for the annual production of 10 000 t of FOS’s: one for a powdery product and the second one for syrup. The economic analysis provided the costs for the production of immobilized FTase and FOS’s using two different price estimates for sucrose.

[1] Aboudzadeh, M. R., Jiawen, Z., & Bin, W. (2006). Modeling of protein adsorption to DEAE Sepharose FF: Comparison of data with model simulation. Korean Journal of Chemical Engineering, 23, 124–130. DOI: 10.1007/BF02705703. http://dx.doi.org/10.1007/BF0270570310.1007/BF02705703Suche in Google Scholar

[2] Aydogan, N., Gurkan, T., & Yilmaz, L. (1998). Effect of operating parameters on the separation of sugars by nanofiltration. Separation Science and Technology, 33, 1767–1785. http://dx.doi.org/10.1080/0149639980854590410.1080/01496399808545904Suche in Google Scholar

[3] Bekers, M., Laukevics, J., Upite, D., Kaminska, E., Vigants, A., Viesturs, U., Pankova, L., & Danilevics, A. (2002). Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochemistry, 38, 701–706. DOI: 10.1016/S0032-9592(02)00189-9. http://dx.doi.org/10.1016/S0032-9592(02)00189-910.1016/S0032-9592(02)00189-9Suche in Google Scholar

[4] Crittenden, R. G., & Playne, M. J. (1996). Production, properties and applications of food-grade oligosaccharides. Trends in Food Science & Technology, 7, 353–361. DOI: 10.1016/S0924-2244(96) 10038-8. http://dx.doi.org/10.1016/S0924-2244(96)10038-810.1016/S0924-2244(96)10038-8Suche in Google Scholar

[5] Flamm, G., Glinsmann, W., Kritchevsky, D., Prosky, L., & Roberfroid, M. (2001). Inulin and oligofructose as dietary fiber: a review of the evidence. Critical Reviews in Food Science and Nutrition, 41, 353–362. DOI: 10.1080/20014091091841. http://dx.doi.org/10.1080/2001409109184110.1080/20014091091841Suche in Google Scholar

[6] Franck, A. (2002). Technological functionality of inulin and oligofructose. British Journal of Nutrition, 87, 287–291. DOI: 10.1079/BJN/2002550. 10.1079/BJN/2002550Suche in Google Scholar

[7] Garleb, K. A., Snook, J. T., Marcon, M. J., Wolf, B. W., & Johnson, W. A. (1996). Effect of fructooligosaccharide containing enteral formulas on subjective tolerance factors, serum chemistry profiles, and feacal bifidobacteria in healthy adult male subjects. Microbial Ecology in Health and Disease, 9, 279–285. http://dx.doi.org/10.1002/(SICI)1234-987X(199611)9:6<279::AID-MEH440>3.3.CO;2-W10.1002/(SICI)1234-987X(199611)9:6<279::AID-MEH440>3.3.CO;2-WSuche in Google Scholar

[8] Ghazi, I., Fernandez-Arrojo, L., Garcia-Arellano, H., Ferrer, M., Ballesteros, A., & Plou, F. J. (2007). Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. Journal of Biotechnology, 128, 204–211. DOI: 10.1016/j.jbiotec.2006.09.017. http://dx.doi.org/10.1016/j.jbiotec.2006.09.01710.1016/j.jbiotec.2006.09.017Suche in Google Scholar

[9] Goulas, A. K., Kapasakalidis, P. G., Sinclair, H. R., Rastall, R. A., & Grandison, A. S. (2002). Purification of oligosaccha-rides by nanofiltration. Journal of Membrane Science, 209, 321–335. DOI: 10.1016/S0376-7388(02)00362-9. http://dx.doi.org/10.1016/S0376-7388(02)00362-910.1016/S0376-7388(02)00362-9Suche in Google Scholar

[10] Gramblička, M., & Polakovič, M. (2007). Adsorption equilibria of glucose, fructose, sucrose, and fructooligosaccharides on cation exchange resin. Journal of Chemical & Engineering Data, 52, 345–350. DOI: 10.1021/je060169d. http://dx.doi.org/10.1021/je060169d10.1021/je060169dSuche in Google Scholar

[11] Heinzle, E., Biwer, A. P., & Cooney, C. L. (2006). Development of sustainable bioprocesses. Hoboken: John Wiley & Sons. Suche in Google Scholar

[12] Charton, F., & Nicoud, R.-M. (1995). Complete design of a simulated moving bed. Journal of Chromatography A, 702, 97–112. DOI: 10.1016/0021-9673(94)01026-B. http://dx.doi.org/10.1016/0021-9673(94)01026-B10.1016/0021-9673(94)01026-BSuche in Google Scholar

[13] Chen, W. C., & Liu, C. H. (1996). Production of beta-fructofuranosidase by Aspergillus japonicus. Enzyme and Microbial Technology, 18, 153–160. DOI: 10.1016/0141-0229(95)00099-2. http://dx.doi.org/10.1016/0141-0229(95)00099-210.1016/0141-0229(95)00099-2Suche in Google Scholar

[14] Chien, C.-S., Lee, W.-C., & Lin, T.-J. (2001). Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzyme and Microbial Technology, 29, 252–257. DOI: 10.1016/S0141-0229(01)00384-2. http://dx.doi.org/10.1016/S0141-0229(01)00384-210.1016/S0141-0229(01)00384-2Suche in Google Scholar

[15] Jung, K. H., Yun, J. W., Kang, K. R., Lim, J. Y., & Lee, J. H. (1989). Mathematical model for enzymatic production of fructo-oligosaccharides from sucrose. Enzyme and Microbial Technology, 11, 491–494. DOI: 10.1016/0141-0229(89)90029-X. http://dx.doi.org/10.1016/0141-0229(89)90029-X10.1016/0141-0229(89)90029-XSuche in Google Scholar

[16] Kim, B. W., Kishihara, S., & Satoshi, F. (1992). Simultaneously continuous separation of glucose,maltose, and maltotriose using a simulated moving-bed adsorbent. Bioscience, Biotechnology, and Biochemistry, 56, 801–802. Suche in Google Scholar

[17] L’Hocine, L., Wang, Z., Jiang, B., & Xu, S. (2000). Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. Journal of Biotechnology, 81, 73–84. DOI: 10.1016/S0168-1656(00)00277-7. http://dx.doi.org/10.1016/S0168-1656(00)00277-710.1016/S0168-1656(00)00277-7Suche in Google Scholar

[18] L’Homme, C., Puigserver, A., & Biagini, A. (2003). Effect of food-processing on the degradation of fructooligosaccharides in fruit. Food Chemistry, 82, 533–537. DOI:10.1016/S0308-8146(03)00003-7. http://dx.doi.org/10.1016/S0308-8146(03)00003-710.1016/S0308-8146(03)00003-7Suche in Google Scholar

[19] Lee, K. J., Choi, J. D., & Lim, J. Y. (1992). Purification and properties of intracellular fructosyl transferase from Aureobasidium pullulans. World Journal of Microbiology & Biotechnology, 8, 411–415. http://dx.doi.org/10.1007/BF0119875610.1007/BF01198756Suche in Google Scholar PubMed

[20] Madlová, A., Antošová, M., Baráthová, M., Polakovič, M., Štefuca, V., & Báleš, V. (1999). Screening of microorganisms for transfructosylating activity and optimization of biotransformation of sucrose to fructooligosaccharrides. Chemical Papers, 53, 366–369. Suche in Google Scholar

[21] Nguyen, Q. D., Rezessy-Szabo, J. M., Bhat, M. K., & Hoschke, A., (2005). Purification and some properties of [α]-fructofuranosidase from Aspergillus niger IMI303386. Process Biochemistry, 40, 2461–2466. DOI: 10.1016/j.procbio. 2004.09.012. http://dx.doi.org/10.1016/j.procbio.2004.09.01210.1016/j.procbio.2004.09.012Suche in Google Scholar

[22] Nizhizawa, K., Nakajima, M., & Nabetani, H. (2001). Kinetic study on transfructosylation by fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membranereactor for fructooligosaccharide production. Food Science and Technology Research, 7, 39–44. http://dx.doi.org/10.3136/fstr.7.3910.3136/fstr.7.39Suche in Google Scholar

[23] Onderková, Z., Polakovič, M., Štefuca, V., Vandákova, M., & Antošová, M. (2006). Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans. Chemical Papers, 60, 469–472. DOI: 10.2478/s11696-006-0085-x. http://dx.doi.org/10.2478/s11696-006-0085-x10.2478/s11696-006-0085-xSuche in Google Scholar

[24] Rivero-Urgell, M., & Santamaria-Orleans, A. (2001). Oligosac-charides: application in infant food. Early Human Development, 65(Supplement 2), 43–52. DOI: 10.1016/S0378-3782(01)00202-X. http://dx.doi.org/10.1016/S0378-3782(01)00202-X10.1016/S0378-3782(01)00202-XSuche in Google Scholar

[25] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004). Production of fructo-oligosaccharides by fructosyltransferase from Aspergillus oryzea CFR 202 and Aureobasidium pullulans CFR 77. Process Biochemistry, 39, 755–760. DOI: 10.1016/S0032-9592(03)00186-9. http://dx.doi.org/10.1016/S0032-9592(03)00186-910.1016/S0032-9592(03)00186-9Suche in Google Scholar

[26] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005a). Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends in Food Science & Technology, 16, 442–457. DOI: 10.1016/j.tifs.2005.05.003. http://dx.doi.org/10.1016/j.tifs.2005.05.00310.1016/j.tifs.2005.05.003Suche in Google Scholar

[27] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005b). Maximization of fructooligosaccharide production by two stage continuous process and its scale up. Journal of Food Engineering, 68, 57–64. DOI: 10.1016/j.jfoodeng.2004.05.022. http://dx.doi.org/10.1016/j.jfoodeng.2004.05.02210.1016/j.jfoodeng.2004.05.022Suche in Google Scholar

[28] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005c). Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochemistry, 40, 1085–1088. DOI: 10.1016/j. procbio.2004.03.009. http://dx.doi.org/10.1016/j.procbio.2004.03.00910.1016/j.procbio.2004.03.009Suche in Google Scholar

[29] Spiegel, J. E., Rose, R., Karabell, P. Frankos, V. H., & Schmitt, D. F. (1994). Safety and benefits of fructooligosaccharides as food ingredients. Food Technology, 48, 85–89. Suche in Google Scholar

[30] Takahashi, Y., & Goto, S. (1994). Continuous separation of fructooligosaccharides using an annular chromatograph. Separation Science and Technology, 29, 1311–1318. DOI: 10.1080/01496399408006942. http://dx.doi.org/10.1080/0149639940800694210.1080/01496399408006942Suche in Google Scholar

[31] Tanriseven, A., & Aslan, Y. (2005). Immobilization of Pectinex Ultra SP-L to produce fructooligosaccharides. Enzyme and Microbial Technology, 36, 550–554. DOI: 10.1016/j.enzmictec. 2004.12.001. http://dx.doi.org/10.1016/j.enzmictec.2004.12.00110.1016/j.enzmictec.2004.12.001Suche in Google Scholar

[32] Vandáková, M., Platková, Z., Antošová, M., Báleš, V., & Polakovič, M., (2004). Optimization of cultivation conditions for production of fructosyltransferase by Aureobasidium pullulans. Chemical Papers, 58, 15–22. Suche in Google Scholar

[33] Vandáková, M., Vaňková, K., Juraščík, M., Annus, J., Minárik, M., & Polakovič, M. (2007). Fructosyltransferase production and isolation in semi-pilot scale. In Proceedings of the 34th International Conference of the Slovak Society of Chemical Engineering, 21–25 May 2007. Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering. Suche in Google Scholar

[34] Vaňková, K., Antošová, M., & Polakovič, M., (2005). Design and economics of industrial production of fructosyltransferase. Chemical Papers, 59, 441–448. Suche in Google Scholar

[35] Vente, J. A. (2005). Adsorbent functionality in relation to selectivity and capacity in oligosaccharide separations. PhD. Thesis, University of Twente, the Netherlands. Suche in Google Scholar

[36] Yun, J. W. (1996). Fructooligosaccharides-Occurrence, preparation, and application. Enzyme and Microbial Technology, 19, 107–117. DOI: 10.1016/0141-0229(95)00188-3. http://dx.doi.org/10.1016/0141-0229(95)00188-310.1016/0141-0229(95)00188-3Suche in Google Scholar

[37] Yun, J. W., Kim, D. H., Kim, B. W., & Song, S. K. (1997). Comparison of sugar compositions between inulo-and fructo-oligosacharides produced by different enzymes forms. Biotechnology Letters, 19, 553–556. DOI: 10.1023/A: 1018393505192. http://dx.doi.org/10.1023/A:101839350519210.1023/A:1018393505192Suche in Google Scholar

[38] Yun J. W., Lee, M., G., & Song, S. K., (1994). Batch production of high-content fruto-oligosaccharides from sucrose by the mixed-enzyme system of β-fructofuranosidase and glucose oxidase. Journal of Fermentation and Bio engineering, 77, 159–163. DOI: 10.1016/0922-338X(94)90316-6. http://dx.doi.org/10.1016/0922-338X(94)90316-610.1016/0922-338X(94)90316-6Suche in Google Scholar

Published Online: 2008-6-30
Published in Print: 2008-8-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
  2. Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
  3. Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
  4. Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
  5. Comparison of different technologies for alginate beads production
  6. Design and economics of industrial production of fructooligosaccharides
  7. Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
  8. 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
  9. Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
  10. Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
  11. Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
  12. Preparation and modification of collagen-based porous scaffold for tissue engineering
  13. Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
  14. Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
  15. Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
  16. Extraction and analysis of ellagic acid from novel complex sources
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0034-y/html
Button zum nach oben scrollen