Startseite Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol

  • Zhicheng Zhu EMAIL logo und Masahiro Mikuriya
Veröffentlicht/Copyright: 30. Juni 2008
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel bridging ligand, (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol (I), and its cobalt(II) complex, [Co(I)2(NCS)2]n (II), were prepared. The structures of ligand I and complex II were determined by single crystal X-ray analysis. Magnetic susceptibility measurements were performed for cobalt (II) complex II. Compound I crystallised in orthorhombic space group Pbca with a = 7.6585(14) Å, b = 12.209(2) Å, c = 23.207(4) Å, V= 2170.0(7) Å3 and Z=8. Complex II crystallised in monoclinic space group P21/n with a = 13.223(8) Å, b = 16.959(10) Å, c = 13.948(8) Å, β = 115.395(10)°, V= 2826(3) Å3 and Z = 4. Each cobalt(II) ion is surrounded by two NCS− anions and four pyridyl moieties from two bridging ligands. Each bridging ligand connects two neighbouring Co(II) ions to form a 2-dimensional structure. Temperature dependence of the molar magnetic susceptibilities in the temperature range of 2–300 K revealed that magnetic interactions between the cobalt ions are weak.

[1] Alley, K. G., Bircher, R., Waldmann, O., Ochsenbein, S. T., Gudel, H. U., Moubaraki, B., Murray, K. S., Fernandez-Alonso, F., Abrahams, B. F., & Boskovic, C. (2006). Mixed-valent cobalt spin clusters: a hexanuclear complex and a one-dimensional coordination polymer comprised of alternating hepta-and mononuclear fragments. Inorganic Chemistry, 45, 8950–8957. DOI: 10.1021/ic060938e. http://dx.doi.org/10.1021/ic060938e10.1021/ic060938eSuche in Google Scholar

[2] Andres, H., Clemente-Juan, J. M., Basler, R., Aebersold, M., Güdel, H., Borrás-Almenar, J. J., Gaita, A., Coronado, E., Büttner, H., & Janssen, S. (2001). Magnetic poly-oxometalates: anisotropic antiferro-and ferromagnetic exchange interactions in the pentameric cobalt(II) cluster [Co3W(D2O)2(CoW9O34)2]12−. A magnetic and inelastic neutron scattering study. Inorganic Chemistry, 40, 1943–1950. DOI: 10.1021/ic001437a. http://dx.doi.org/10.1021/ic001437a10.1021/ic001437aSuche in Google Scholar

[3] Aumüller, A., Erk, P., Klebe, G., Hünig, S., von Schütz, J. U., & Werner, H. P. (1986). A radical anion salt of 2,5-dimethyl-N,N′-dicyanoquinonediimine with extremely high electrical conductivity. Angewandte Chemie International Edition in English, 25, 740–741. 10.1002/anie.198607401. http://dx.doi.org/10.1002/anie.19860740110.1002/anie.198607401Suche in Google Scholar

[4] Bruker AXS Inc. (1998). SAINTPLUS (Program for data reduction). Madison: Bruker AXS Inc. Suche in Google Scholar

[5] Kahn, O. (1993). Molecular magnetism, New York: VCH Publishers. Suche in Google Scholar

[6] Karasawa, S., Zhou, G., Morikawa, H., & Koga, N. (2003). Magnetic properties of tetrakis[4-(α-diazobenzyl)pyridine]bis (thiocyanato-N)cobalt(II) in frozen solution after irradiation. Formation of a single-molecule magnet in frozen solution. Journal of the American Chemical Society, 125, 13676–13677. DOI: 10.1021/ja035478s. http://dx.doi.org/10.1021/ja035478s10.1021/ja035478sSuche in Google Scholar

[7] Kepert, C. J. (2006). Advanced functional properties in nanoporous coordination framework materials. Chemical Communications, 695–700. DOI: 10.1039/b515713g. 10.1039/b515713gSuche in Google Scholar

[8] Liu, G.-S., Tate, A. G., Bryant, G. W., & Wall, T. F. (2000). Mathematical modeling of coal char reactivity with CO2 at high pressures and temperatures. Fuel, 79, 1145–1154. DOI: 10.1016/S0016-2361(99)00274-4. http://dx.doi.org/10.1016/S0016-2361(99)00274-410.1016/S0016-2361(99)00274-4Suche in Google Scholar

[9] Maspoch, D., Ruiz-Molina, D., Wurst, K., Domingo, N., Cav-allini, M., Biscarini, F., Tejada, J., Rovira, C., & Veciana, J. (2003). A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nature Materials, 2, 190–195. DOI: 10.1038/nmat834. http://dx.doi.org/10.1038/nmat83410.1038/nmat834Suche in Google Scholar PubMed

[10] Mikloš, D., Jašková, J., Segľa, P., Korabik, M., Mrozinski, J., Sillanpää, R., Mikuriya, M., & Melník, M. (2006). Crystal structures, spectral and magnetic properties of cobalt(II) pyridinecarboxylates: a novel polymeric chain in {[{2,6-(MeO)2nic}2(H2O)2Co(µ-H2O)Co(H2O)4(µ-H2O)]{2,6-(MeO)2-nic}2(H2O)6}n. Inorganica Chimica Acta, 359, 4386–4392. DOI: 10.1016/j.ica.2006.07.002. http://dx.doi.org/10.1016/j.ica.2006.07.00210.1016/j.ica.2006.07.002Suche in Google Scholar

[11] Moragues-Canovás, M., Talbot-Eeckelaers, C. E., Catala, L., Lloret, F., Wernsdorfer, W., Brechin, E. K., Mallah, T. (2006). Ferromagnetic cobalt metallocycles. Inorganic Chemistry, 45, 7038–7040. DOI: 10.1021/ic0605773. http://dx.doi.org/10.1021/ic060577310.1021/ic0605773Suche in Google Scholar PubMed

[12] Niel, V., Thompson, A. L., Munoz, M. C., Galet, A., Goeta, A. S. E., & Real, J. A. (2003). Crystalline-state reaction with allosteric effect in spin-crossover, interpenetrated networks with magnetic and optical bistability. Angewandte Chemie International Edition, 42, 3760–3763. DOI: 10.1002/anie.200351853. http://dx.doi.org/10.1002/anie.20035185310.1002/anie.200351853Suche in Google Scholar PubMed

[13] Pariya, C., Sparrow, C. R., Back, C.-K., Sandí, G., Fron-czek, F. R., & Maverick, A. W. (2007). Copper β-diketonate molecular squares and their host-guest reactions. Angewandte Chemie International Edition, 46, 6305–6308. DOI: 10.1002/anie.200701252. http://dx.doi.org/10.1002/anie.20070125210.1002/anie.200701252Suche in Google Scholar PubMed

[14] Sato, Y., Ohkoshi, S., Arai, K., Tozawa, M., & Hashimoto, K. (2003). Solvatomagnetism-induced Faraday effect in a cobalt hexacyanochromate-based magnet. Journal of the American Chemical Society, 125, 14590–14595. DOI: 10.1021/ja030375v. http://dx.doi.org/10.1021/ja030375v10.1021/ja030375vSuche in Google Scholar PubMed

[15] Sheldrick, G. M. (1997). SHELXS-97 (Program for crystal structure solution). Göttingen: University of Göttingen. Suche in Google Scholar

[16] Sheldrick, G. M. (2001). SADABS (Program for crystallographic data correction). Göttingen: University of Göttingen. Suche in Google Scholar

[17] Tone, K., Sakiyama, H., Mikuriya, M., Yamasaki, M., & Nishida, Y. (2007). Magnetic behavior of dinuclear cobalt(II) complexes assumed to be caused by a paramagnetic impurity can be explained by tilts of local distortion axes. Inorganic Chemistry Communications 10, 944–947. DOI: 10.1016/j.inoche.2007.04.028. http://dx.doi.org/10.1016/j.inoche.2007.04.02810.1016/j.inoche.2007.04.028Suche in Google Scholar

[18] Zhu, Z., & Mikuriya, M. (2007). Synthesis, crystal structure and magnetic properties of a cobalt(II) complex with pyridine-4-yl-(5,3′,5′-trichloro-[4,4′]bipyridinyl-3-yl)-methanol having porous 3D structure. In M. Melník, J. Šíma, & M. Tatarko (Eds.), Achievements in coordination, bioinorganic and applied inorganic chemistry (pp. 363–370). Bratislava: Slovak Technical University Press. http://www.chtf.stuba.sk/kach/smolenice/Monograph/363–370.pdf Suche in Google Scholar

Published Online: 2008-6-30
Published in Print: 2008-8-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
  2. Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
  3. Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
  4. Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
  5. Comparison of different technologies for alginate beads production
  6. Design and economics of industrial production of fructooligosaccharides
  7. Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
  8. 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
  9. Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
  10. Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
  11. Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
  12. Preparation and modification of collagen-based porous scaffold for tissue engineering
  13. Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
  14. Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
  15. Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
  16. Extraction and analysis of ellagic acid from novel complex sources
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0044-9/html
Button zum nach oben scrollen