Startseite Extraction and analysis of ellagic acid from novel complex sources
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Extraction and analysis of ellagic acid from novel complex sources

  • Antonio Aguilera-Carbo EMAIL logo , Christopher Augur , Lilia Prado-Barragan , Cristóbal Aguilar und Ernesto Favela-Torres
Veröffentlicht/Copyright: 30. Juni 2008
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ellagic acid (EA) was quantified by reversed-phase high-performance liquid chromatography (RPHPLC) coupled with photodiode array detection (DAD) in five fine-powdered plants collected from the semiarid region of Mexico. Samples analysed included Jatropha dioica branches (Dragon’s blood), Euphorbia antisyphyllitica branches (Candelilla), Turnera diffusa Willd leaves (Damiana), Flourensia cernua leaves (hojasén) and Punica granatum husk (pomegranate) at two maturity stages (“turning” or intermediate and maturated fruit, considered as positive controls). The results demonstrated high EA concentrations in all tested samples which are novel sources of this natural antioxidant. The method developed for the EA analysis is fast and it showed an excellent linearity range, repeatability, intra-and inter-day precision and accuracy with respect to the methods reported for the EA analysis.

[1] Akiyama, H., Fujii, K., Yamasaki, O., Oono, T., & Iwatsuki, K. (2001). Antibacterial action of several tannins against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 48, 487–491. DOI: 10.1093/jac/48.4.487. http://dx.doi.org/10.1093/jac/48.4.48710.1093/jac/48.4.487Suche in Google Scholar

[2] Amakura, Y., Okada, M., Tsuji, S., & Tonogai, Y. (2000). Determination of phenolic acids in fruit juices by isocratic column liquid chromatography. Journal of Chromatography A, 891, 183–188. DOI: 10.1016/S0021-9673(00)00625-7. http://dx.doi.org/10.1016/S0021-9673(00)00625-710.1016/S0021-9673(00)00625-7Suche in Google Scholar

[3] Asamy, Y., Ogura, T., Otake, N., Nishimura, T., Xinsheng, Y., Sakurai, T., Nagasawa, H., Sakuda, S., & Tatsuta, K. (2003). Isolation and synthesis of a new bioactive ellagic acid derivatives from Combretum yunnanensis. Journal of Natural Products, 66, 729–731. DOI: 10.1021/np030041j. http://dx.doi.org/10.1021/np030041j10.1021/np030041jSuche in Google Scholar

[4] Atta-Ur-Rahman, Ngounou, F. N., Choudhary, M. I., Malik, S., Makhmoor, T., Nur-E-Alam, M., Zareen, S., Lontsi, D., Ayafor, J. F., & Sondengam, B. L. (2001). New antioxidant and antimicrobial ellagic acid derivatives from Pteleopsis hylodendron. Planta Medica, 67, 335–339. DOI: 10.1055/s-2001-14306. http://dx.doi.org/10.1055/s-2001-1430610.1055/s-2001-14306Suche in Google Scholar

[5] Aviram, M., Dornfeld, L., Rosenblat, M., Volkova, N., Kaplan, M., Coleman, R., Hayek, T., Presser, D., & Fuhrman, B. (2000). Pomegranate juice consuption reduce oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in human and in atherosclerotic apolioprotein E-deficient mice. American Journal of Clinical Nutrition, 71, 1062–1076. Retrieved from http://www.ajcn.org/cgi/content/full/71/5/1062. Suche in Google Scholar

[6] Bala, I., Bhardwaj, V., Hariharan, S., & Ravi Kumar, M. N. V. (2006). Analytical methods for assay of ellagic acid and its solubility studies. Journal of Pharmaceutical and Biomedical Analysis, 40, 206–210. DOI: 10.1016/j.jpba.2005.07.006. http://dx.doi.org/10.1016/j.jpba.2005.07.00610.1016/j.jpba.2005.07.006Suche in Google Scholar

[7] Barch, D. H., Rundhaugen, L. M., Stoner, G. D., Pillay, S. N., & Rosche, W. A. (1996). Structure-funtion relationships of the dietary anticarcinogen ellagic acid. Carcinogenesis, 17, 265–269. DOI: 10.1093/carcin/17.2.265. http://dx.doi.org/10.1093/carcin/17.2.26510.1093/carcin/17.2.265Suche in Google Scholar

[8] Bianco, M.-A., Handaji, A., & Savolainen, A. (1998). Quantitative analysis of ellagic acid in hardwood samples. The Science of the Total Environment, 222, 123–126. DOI: 10.1016/S0048-9697(98)00294-0. http://dx.doi.org/10.1016/S0048-9697(98)00294-010.1016/S0048-9697(98)00294-0Suche in Google Scholar

[9] Carrawey, R. E., Hassan, S., & Cochrane, D. E. (2004). Polyphenolic antioxidants mimic the effects of 1,4-dihydropyridines on neurotensin receptor funtion in PC3 cells. Journal of Pharmacology and Experimental Therapeutics, 309, 92–101. DOI: 10.1124/jpet.103.060442. http://dx.doi.org/10.1124/jpet.103.06044210.1124/jpet.103.060442Suche in Google Scholar

[10] Clifford, M. N., & Scalbert, A. (2000). Ellagitannins — nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80, 1118–1125. DOI: 10.1002/(SICI) 1097-0010(20000515)80:7〈1118::AID-JSFA570〉3.0.CO;2-9. http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1118::AID-JSFA570>3.0.CO;2-910.1002/(SICI)1097-0010(20000515)80:7<1118::AID-JSFA570>3.0.CO;2-9Suche in Google Scholar

[11] Elkhateeb, A., Suberki, K., Takahashi, H., Matsuura, H., Yamasaki, M., Yamato, O., Maede, Y., Katakura, K., Yoshihara, T., & Nabeta, K. (2005). Anti-babesial ellagic acid rhamnosides from the bark of Elaeocarpus parvifolius. Phytochemistry, 66, 2577–2580. DOI: doi:10.1016/j.phytochem. 2005.08.020. http://dx.doi.org/10.1016/j.phytochem.2005.08.02010.1016/j.phytochem.2005.08.020Suche in Google Scholar

[12] El-Toumy, S. A. A., & Rauwald, H. W. (2002). Two ellagitannins from Punica granatum heartwood. Phytochemistry, 61, 971–974. DOI: 10.1016/S0031-9422(02)00435-1. http://dx.doi.org/10.1016/S0031-9422(02)00435-110.1016/S0031-9422(02)00435-1Suche in Google Scholar

[13] El-Toumy, S. A. A., & Rauwald, H. W. (2003). Two new ellagic rhamnosides from Punica granatum heartwood. Planta Medica, 69, 682–684. DOI: 10.1055/s-2003-41107. http://dx.doi.org/10.1055/s-2003-4110710.1055/s-2003-41107Suche in Google Scholar PubMed

[14] Huetz, P., Mavaddat, N., & Mavri, J. (2005). Reaction between ellagic acid and ultimate carcinogen. Journal of Chemical Information and Modeling, 45, 1564–1570. DOI: 10.1021/ci050163c. http://dx.doi.org/10.1021/ci050163c10.1021/ci050163cSuche in Google Scholar PubMed

[15] Koponen, J. M., Happonen, A. M., Mattila, P. H., & Torrone, A. R. (2007). Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. Journal of Agricultural and Food Chemistry, 55, 1612–1619. DOI: 10.1021/jf062897a. http://dx.doi.org/10.1021/jf062897a10.1021/jf062897aSuche in Google Scholar PubMed

[16] Lei, Z. (2002). Monomeric ellagitannins in oaks and sweetgum. Ph.D. thesis. Wood Science and Forest Products, Blacksburg, Virginia, U.S.A. Suche in Google Scholar

[17] Machado, T. B., Leal, I. C. R., Amaral, A. C. F., Dos Santos, K. R. N., Da Silva, M. G., & Kuster, R. M. (2002). Antimicrobial ellagitannin of Punica granatum fruits. Journal of Brazilian Chemical Society, 13, 606–610. Retrieved from http://jbcs.sbq.org.br/jbcs/2002/v13 n5/09.pdf. Suche in Google Scholar

[18] Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. American Journal of Clinical Nutrition, 79, 727–747. Retrieved from http://ajcn.org/cgi/reprint/79/5/727. Suche in Google Scholar

[19] Park, E. K., Kim, M. S., Lee, S. H., Kim, K. H., Park, J.-Y., Kim, T.-H., Lee, I.-S., Woo, J.-T., Jung, J.-C., Shin, H.-I., Choi, J.-Y., & Kim, S.-Y. (2004). Furosin, an ellagitanin, suppresses RANKL-induced osteoclast differentiation and through inhibition of MAP kinase activation and actin ring formation. Biochemical and Biophysical Research Communication, 325, 1472–1480. DOI: 10.1016/j.bbrc.2004.10.197. http://dx.doi.org/10.1016/j.bbrc.2004.10.19710.1016/j.bbrc.2004.10.197Suche in Google Scholar PubMed

[20] Seeram, N., Lee, R., Ardí, M., & Herber, D. (2005). Rapid large scale purification of ellagitannins from pomegranate husk, a by-product of the commercal juice industry. Separation and Purification Technology, 41, 49–55. DOI: 10.1016/j.seppur. 2004.04.003. http://dx.doi.org/10.1016/j.seppur.2004.04.00310.1016/j.seppur.2004.04.003Suche in Google Scholar

[21] Sharma, S., Wyatt, G. P., & Steele, V. E. (1997). A carcinogen-DNA binding assay as a biomarker screen for identifying potential chemopreventive agents. Methods in Cell Science, 19, 45–48. DOI: 10.1023/A:1009798621899. http://dx.doi.org/10.1023/A:100979862189910.1023/A:1009798621899Suche in Google Scholar

[22] Singh, B., Bhat, T. K., & Singh, B. (2003). Potential therapeutic applications of some antinutritional plant secondary metabolites. Journal of Agricultural and Food Chemistry, 51, 5579–5597. DOI: 10.1021/jf021150r. http://dx.doi.org/10.1021/jf021150r10.1021/jf021150rSuche in Google Scholar PubMed

[23] Stoner, G. D., & Gupta A. (2001). Etiology and chemoprevention of esophageal squamous cell carcinoma. Carcinogenesis, 22, 1737–1746. DOI: 10.1093/carcin/22.11.1737. http://dx.doi.org/10.1093/carcin/22.11.173710.1093/carcin/22.11.1737Suche in Google Scholar PubMed

[24] Treviño-Cueto, B., Luis, M., Contreras-Esquivel, J. C., Rodríguez, R., Aguilera, A., & Aguilar, C. N. (2007). Gallic acid and tannase accumulation during fungal solid state culture of a tannin-rich desert plant (Larrea tridentata Cov.). Bioresourse Techonology, 98, 721–724. DOI: 10.1016/j.biortech.2006.02.015. http://dx.doi.org/10.1016/j.biortech.2006.02.01510.1016/j.biortech.2006.02.015Suche in Google Scholar PubMed

[25] Varadkar, P., Dubey, P., Krishna, M., & Verma, N. C. (2001). Modulation of radiation-induced protein kinase C activity by phenolics. Journal of Radiological Pretection, 21, 361–370. DOI: 10.1088/0952-4746/21/4/304. http://dx.doi.org/10.1088/0952-4746/21/4/30410.1088/0952-4746/21/4/304Suche in Google Scholar PubMed

[26] Wang, X., Germansderfer, A., Harms, J., & Rathore, A. S. (2007). Using statistical analysis for setting process validation acceptance criteria for biotech products. Biotechnology Progress, 23, 55–60. DOI: 10.1021/bp060359c. http://dx.doi.org/10.1021/bp060359c10.1021/bp060359cSuche in Google Scholar PubMed

Published Online: 2008-6-30
Published in Print: 2008-8-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
  2. Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
  3. Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
  4. Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
  5. Comparison of different technologies for alginate beads production
  6. Design and economics of industrial production of fructooligosaccharides
  7. Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
  8. 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
  9. Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
  10. Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
  11. Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
  12. Preparation and modification of collagen-based porous scaffold for tissue engineering
  13. Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
  14. Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
  15. Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
  16. Extraction and analysis of ellagic acid from novel complex sources
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0042-y/html
Button zum nach oben scrollen