Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
-
Julian Geske
Abstract
Aqueous systems are omnipresent in nature and technology. They show complex behaviors, which often originate in the existence of hydrogen-bond networks. Prominent examples are the anomalies of water and the non-ideal behaviors of aqueous solutions. The phenomenology becomes even richer when aqueous liquids are subject to confinement. To this day, many properties of water and its mixtures, in particular, under confinement, are not understood. In recent years, molecular dynamics simulations developed into a powerful tool to improve our knowledge in this field. Here, our simulation results for water and aqueous mixtures in the bulk and in various confinements are reviewed and some new simulation data are added to improve our knowledge about the role of interfaces. Moreover, findings for water are compared with results for silica, exploiting that both systems form tetrahedral networks.
Acknowledgement
We thank the Deutsche Forschungsgemeinschaft (DFG) for funding in the framework of Forschergruppe 1583 through grants Dr-300/11-1/2 and Vo-905/9-1/2.
References
1. P. G. Debenedetti, J. Phys.: Condens. Matter 15 (2003) R1669.10.1088/0953-8984/15/45/R01Suche in Google Scholar
2. P. H. Poole, F. Sciortino, U. Essmann, H. E. Stanley, Nature 360 (1992) 324.10.1038/360324a0Suche in Google Scholar
3. H. E. Stanley, O. Mishima, Nature 396 (1998) 329.10.1038/24540Suche in Google Scholar
4. K. Ito, C. T. Moynihan, C. A. Angell, Nature 398 (1999) 492.10.1038/19042Suche in Google Scholar
5. F. W. Starr, C. A. Angell, H. E. Stanley, Physica A 323 (2003) 51.10.1016/S0378-4371(03)00012-8Suche in Google Scholar
6. K. Amann-Winkel, R. Böhmer, F. Fujara, C. Gainaru, B. Geil, T. Loerting, Rev. Mod. Phys. 88 (2016) 011002.10.1103/RevModPhys.88.011002Suche in Google Scholar
7. P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo, J. A. Sellberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, L. G. M. Pettersson, Chem. Rev. 116 (2016) 7463.10.1021/acs.chemrev.5b00750Suche in Google Scholar PubMed PubMed Central
8. C. Vega, J. L. F. Abascal, Phys. Chem. Chem. Phys. 13 (2011) 19663.10.1039/c1cp22168jSuche in Google Scholar PubMed
9. H. Tanaka, Nature 380 (1996) 328.10.1038/380328a0Suche in Google Scholar
10. C. Huang, K. T. Wikfeldt, D. Nordlund, U. Bergmann, T. McQueen, J. Sellberg, L. G. M. Pettersson, A. Nilsson, Phys. Chem. Chem. Phys. 13 (2011) 19997.10.1039/c1cp22804hSuche in Google Scholar PubMed
11. J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos, P. G. Debenedetti, Nature 510 (2014) 385.10.1038/nature13405Suche in Google Scholar PubMed
12. I. Brovchenko, A. Oleinikova, ChemPhysChem 9 (2008) 2660.10.1002/cphc.200800639Suche in Google Scholar PubMed
13. D. T. Limmer, D. Chandler, J. Chem. Phys. 135 (2011) 134503.10.1063/1.3643333Suche in Google Scholar PubMed
14. S. D. Overduin, G. N. Patey, J. Chem. Phys. 143 (2015) 094504.10.1063/1.4929787Suche in Google Scholar PubMed
15. J. J. Shephard, C. G. Salzmann, J. Phys. Chem. Lett. 7 (2016) 2281.10.1021/acs.jpclett.6b00881Suche in Google Scholar PubMed
16. P. G. Debenedetti, Metastable Liquids: Concepts and Principles, Princeton Univ. Press, Princeton (1996).10.1515/9780691213941Suche in Google Scholar
17. R. Brückner, J. Non-Cryst. Solids 5 (1970) 123.10.1016/0022-3093(70)90190-0Suche in Google Scholar
18. A. C. Angell, H. Kanno, Science 193 (1976) 1121.10.1126/science.193.4258.1121Suche in Google Scholar PubMed
19. B. W. H. van Beest, G. J. Kramer, R. A. van Santen, Phys. Rev. Lett. 64 (1990) 1955.10.1103/PhysRevLett.64.1955Suche in Google Scholar PubMed
20. I. Saika-Voivod, P. H. Poole, F. Sciortino, Nature 412 (2001) 514.10.1038/35087524Suche in Google Scholar PubMed
21. I. Saika-Voivod, F. Sciortino, P. H. Poole, Phys. Rev. E 63 (2000) 011202.10.1103/PhysRevE.63.011202Suche in Google Scholar PubMed
22. W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, S. C. Glotzer, Phys. Rev. Lett. 79 (1997) 2827.10.1103/PhysRevLett.79.2827Suche in Google Scholar
23. S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 116 (2016) 7608.10.1021/acs.chemrev.5b00609Suche in Google Scholar PubMed
24. G. Hummer, J. C. Rasaiah, J. P. Noworyta, Nature, 414 (2001) 188.10.1038/35102535Suche in Google Scholar PubMed
25. D. Chandler, Nature 437 (2005) 640.10.1038/nature04162Suche in Google Scholar PubMed
26. I. Brovchenko, A. Krukau, A. Oleinikova, A. K. Mazur, Phys. Rev. Lett. 97 (2006) 137801.10.1103/PhysRevLett.97.137801Suche in Google Scholar PubMed
27. P. Gallo, M. Rovere, S. H. Chen, J. Phys. Chem. Lett. 1 (2010) 729.10.1021/jz9003125Suche in Google Scholar
28. N. Giovambattista, P. J. Rossky, P. G. Debenedetti, Annu. Rev. Phys. Chem. 63 (2012) 179.10.1146/annurev-physchem-032811-112007Suche in Google Scholar PubMed
29. P. Ball, Chem. Rev. 108 (2008) 74.10.1021/cr068037aSuche in Google Scholar PubMed
30. S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney, A. K. Soper, Nature 416 (2002) 829.10.1038/416829aSuche in Google Scholar PubMed
31. K. Elamin, H. Jansson, S. Kittaka, J. Swenson, Phys. Chem. Chem. Phys. 15 (2013) 18437.10.1039/c3cp51786aSuche in Google Scholar PubMed
32. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62 (1999) 1573.10.1088/0034-4885/62/12/201Suche in Google Scholar
33. D. Demuth, M. Sattig, E. Steinrücken, M. Weigler, M. Vogel, Z. Phys. Chem. 232 (2018) 1059.10.1515/zpch-2017-1027Suche in Google Scholar
34. X. Tian, Z. Yang, B. Zhou, P. Xiu, Y. Tu, J. Chem. Phys. 138 (2013) 204711.10.1063/1.4807484Suche in Google Scholar PubMed
35. X.-Y. Guo, T. Watermann, D. Sebastiani, J. Phys. Chem. B 118 (2014) 10207.10.1021/jp505203tSuche in Google Scholar PubMed
36. M. Zhao, X. Yang, J. Phys. Chem. C 119 (2015) 21664.10.1021/acs.jpcc.5b03307Suche in Google Scholar
37. H. J. C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 91 (1995) 43.10.1016/0010-4655(95)00042-ESuche in Google Scholar
38. E. Lindahl, B. Hess, D. van der Spoel, J. Mol. Model. 7 (2001) 306.10.1007/s008940100045Suche in Google Scholar
39. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, J. Comput. Chem. 26 (2005) 1701.10.1002/jcc.20291Suche in Google Scholar PubMed
40. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4 (2008) 435.10.1021/ct700301qSuche in Google Scholar PubMed
41. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 26 (2005) 1781.10.1002/jcc.20289Suche in Google Scholar PubMed PubMed Central
42. T. Darden, D. York, L. Pederson, J. Chem. Phys. 98 (1993) 10089.10.1063/1.464397Suche in Google Scholar
43. L. Heckmann, B. Drossel, J. Chem. Phys. 137 (2012) 064503.10.1063/1.4742332Suche in Google Scholar PubMed
44. A. Ben-Naim, J. Chem. Phys. 128 (2008) 024505.10.1063/1.2818051Suche in Google Scholar PubMed
45. L. Heckmann, B. Drossel, J. Chem. Phys. 138 (2013) 234503.10.1063/1.4810875Suche in Google Scholar PubMed
46. S. Sastry, P. G. Debenedetti, F. Sciortino, H. E. Stanley, Phys. Rev. E 53 (1996) 6144.10.1103/PhysRevE.53.6144Suche in Google Scholar
47. C. A. Angell, Science 319 (2008) 582.10.1126/science.1131939Suche in Google Scholar PubMed
48. H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, J. Phys. Chem. 91 (1987) 6269.10.1021/j100308a038Suche in Google Scholar
49. J. L. F. Abascal, C. Vega, J. Chem. Phys. 123 (2005) 234505.10.1063/1.2121687Suche in Google Scholar PubMed
50. J. L. F. Abascal, C. Vega, J. Chem. Phys. 133 (2010) 234502.10.1063/1.3506860Suche in Google Scholar PubMed
51. P. Richet, Geochim. Cosmochim. Acta 48 (1984) 471.10.1016/0016-7037(84)90275-8Suche in Google Scholar
52. C. A. Angell, J. Non-Cryst. Solids 131 (1991) 13.10.1016/0022-3093(91)90266-9Suche in Google Scholar
53. E. Rössler, K.-U. Hess, V. N. Novikov, J. Non-Cryst. Solids 223 (1998) 207.10.1016/S0022-3093(97)00365-7Suche in Google Scholar
54. K.-U. Hess, D. B. Dingwell, E. Rössler, Chem. Geol. 128 (1996) 155.10.1016/0009-2541(95)00170-0Suche in Google Scholar
55. C. Sonneville, T. Deschamps, C. Martinet, D. de Ligny, A. Mermet, B. Champagnon, J. Non-Cryst. Solids 382 (2013) 133.10.1016/j.jnoncrysol.2012.12.002Suche in Google Scholar
56. J. Horbach, W. Kob, Phys. Rev. B 60 (1999) 3169.10.1103/PhysRevB.60.3169Suche in Google Scholar
57. J. Horbach, W. Kob, Phys. Rev. E 64 (2001) 041503.10.1103/PhysRevE.64.041503Suche in Google Scholar PubMed
58. I. Saika-Voivod, F. Sciortino, P. H. Poole, Phys. Rev. E 69 (2004) 041503.10.1103/PhysRevE.69.041503Suche in Google Scholar PubMed
59. M. Vogel, S. C. Glotzer, Phys. Rev. Lett. 92 (2004) 255901.10.1103/PhysRevLett.92.255901Suche in Google Scholar PubMed
60. M. Vogel, S. C. Glotzer, Phys. Rev. E 70 (2004) 061504.10.1103/PhysRevE.70.061504Suche in Google Scholar PubMed
61. A. Saksaengwijit, J. Reinisch, A. Heuer, Phys. Rev. Lett. 93 (2004) 235701.10.1103/PhysRevLett.93.235701Suche in Google Scholar PubMed
62. E. Lascaris, M. Hemmati, S. V. Buldyrev, H. E. Stanley, C. A. Angell, J. Chem. Phys. 142 (2015) 104506.10.1063/1.4913747Suche in Google Scholar PubMed
63. S. Sastry, C. A. Angell, Nat. Mater. 2 (2003) 739.10.1038/nmat994Suche in Google Scholar PubMed
64. J. Geske, B. Drossel, M. Vogel, AIP Adv. 6 (2016) 035131.10.1063/1.4945445Suche in Google Scholar
65. G. Brebec, R. Seguin, C. Sella, J. Bevenot, J. C. Martin, Acta Metall. 28 (1980) 327.10.1016/0001-6160(80)90168-6Suche in Google Scholar
66. J. C. Mikkelsen Jr, Appl. Phys. Lett., 45 (1984) 1187.10.1063/1.95086Suche in Google Scholar
67. R. Horstmann, M. Vogel, J. Chem. Phys. 147 (2017) 034505.10.1063/1.4993445Suche in Google Scholar PubMed
68. E. Pafong Sanjon, B. Drossel, M. Vogel, J. Chem. Phys. 148 (2018) 104506.10.1063/1.5017681Suche in Google Scholar PubMed
69. M. Sasai, Physica A 285 (2000) 315.10.1016/S0378-4371(00)00288-0Suche in Google Scholar
70. E. Duboue-Dijon, D. Laage, J. Phys. Chem. B 119 (2015) 8406.10.1021/acs.jpcb.5b02936Suche in Google Scholar PubMed PubMed Central
71. A. Nilsson, L. G. M. Pettersson, Nat. Commun. 6 (2015) 8998.10.1038/ncomms9998Suche in Google Scholar PubMed PubMed Central
72. B. Schmidtke, N. Petzold, R. Kahlau, E. A. Rössler, J. Chem. Phys. 139 (2013) 084504.10.1063/1.4817406Suche in Google Scholar PubMed
73. B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, E. A. Rössler, Phys. Rev. E 86 (2012) 041507.10.1103/PhysRevE.86.041507Suche in Google Scholar PubMed
74. B. Schmidtke, M. Hofmann, A. Lichtinger, E. A. Rössler, Macromolecules 48 (2015) 3005.10.1021/acs.macromol.5b00204Suche in Google Scholar
75. P. Scheidler, W. Kob, K. Binder, EPL (Europhys. Lett.) 52 (2000) 277.10.1209/epl/i2000-00435-1Suche in Google Scholar
76. P. Scheidler, W. Kob, K. Binder, J. Phys. Chem. B 108 (2004) 6673.10.1021/jp036593sSuche in Google Scholar
77. W. Kob, S. Roldán-Vargas, L. Berthier, Nat. Phys. 8 (2012) 164.10.1038/nphys2133Suche in Google Scholar
78. A. Cavagna, T. S. Grigera, P. Verrocchio, Phys. Rev. Lett. 98 (2007) 187801.10.1103/PhysRevLett.98.187801Suche in Google Scholar PubMed
79. L. Berthier, W. Kob, Phys. Rev. E 85 (2012) 011102.10.1103/PhysRevE.85.011102Suche in Google Scholar PubMed
80. G. M. Hocky, T. E. Markland, D. R. Reichman, Phys. Rev. Lett. 108 (2012) 225506.10.1103/PhysRevLett.108.225506Suche in Google Scholar PubMed
81. F. Klameth, M. Vogel, J. Chem. Phys. 138 (2013) 134503.10.1063/1.4798217Suche in Google Scholar PubMed
82. F. Klameth, P. Henritzi, M. Vogel, J. Chem. Phys. 140 (2014) 144501.10.1063/1.4870089Suche in Google Scholar PubMed
83. F. Klameth, M. Vogel, J. Phys. Chem. Lett. 6 (2015) 4385.10.1021/acs.jpclett.5b02010Suche in Google Scholar PubMed
84. J. Geske, B. Drossel, M. Vogel, J. Chem. Phys. 146 (2017) 134502.10.1063/1.4979341Suche in Google Scholar PubMed
85. S. Mirigian, K. S. Schweizer, J. Phys. Chem. Lett. 4 (2015) 3648.10.1021/jz4018943Suche in Google Scholar
86. T. R. Kirkpatrick, P. G. Wolynes, Phys. Rev. A 35 (1987) 3072.10.1103/PhysRevA.35.3072Suche in Google Scholar
87. G. Adam, J. H. Gibbs, J. Chem. Phys. 43 (1965) 139.10.1063/1.1696442Suche in Google Scholar
88. A. Cavagna, Phys. Rep. 476 (2009) 51.10.1016/j.physrep.2009.03.003Suche in Google Scholar
89. W. Götze, L. Sjogren, Rep. Prog. Phys. 55 (1992) 241.10.1088/0034-4885/55/3/001Suche in Google Scholar
90. G. Biroli, J.-P. Bouchaud, A. Cavagna, T. S. Grigera, P. Verrocchio, Nat. Phys. 4 (2008) 771.10.1038/nphys1050Suche in Google Scholar
91. J. Geske, M. Vogel, Mol. Simul. 43 (2017) 13.10.1080/08927022.2016.1221072Suche in Google Scholar
92. M. F. Harrach, B. Drossel, J. Chem. Phys. 140 (2014) 174501.10.1063/1.4872239Suche in Google Scholar PubMed
93. M. F. Harrach, F. Klameth, B. Drossel, M. Vogel, J. Chem. Phys. 142 (2015) 034703.10.1063/1.4905557Suche in Google Scholar PubMed
94. C. Allolio, F. Klameth, M. Vogel, D. Sebastiani, ChemPhysChem 15 (2014) 3955.10.1002/cphc.201402371Suche in Google Scholar PubMed
95. B. Grünberg, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H.-H. Limbach, G. Buntkowsky, Chem. Eur. J. 10 (2004) 5689.10.1002/chem.200400351Suche in Google Scholar
96. A. Vyalikh, T. Emmler, B. Grünberg, Y. Xu, I. Shenderovich, H. Findenegg, H.-H. Limbach, G. Buntkowsky, Z. Phys. Chem. 221 (2007) 155.10.1524/zpch.2007.221.1.155Suche in Google Scholar
97. E. Pafong, J. Geske, B. Drossel, J. Chem. Phys. 145 (2016) 114901.10.1063/1.4962516Suche in Google Scholar
98. M. F. Harrach, B. Drossel, W. Winschel, T. Gutmann, G. Buntkowsky, J. Phys. Chem. C 119 (2015) 28961.10.1021/acs.jpcc.5b09537Suche in Google Scholar
99. A. Bródka, T. W. Zerda, J. Chem. Phys. 104 (1996) 6319.10.1063/1.471292Suche in Google Scholar
100. G. Chidichimo, D. Imbardelli, M. Longeri, A. Saupe, Mol. Phys. 65 (1988) 1143.10.1080/00268978800101651Suche in Google Scholar
101. W. Caminati, G. Corbelli, J. Mol. Spectrosc. 90 (1981) 572.10.1016/0022-2852(81)90146-6Suche in Google Scholar
102. M. R. Kazerouni, L. Hedberg, K. Hedberg, J. Am. Chem. Soc. 119 (1997) 8324.10.1021/ja9708631Suche in Google Scholar
103. Y. Chen, Y. Ozaki, M. A. Czarnecki, Phys. Chem. Chem. Phys. 15 (2013) 18694.10.1039/c3cp52146jSuche in Google Scholar PubMed
104. Y.-S. Lin, P.-Y. Hsiao, C.-C. Chieng, J. Chem. Phys. 134 (2011) 154509.10.1063/1.3578184Suche in Google Scholar PubMed
105. A. Kaiser, O. Ismailova, A. Koskela, S. E. Huber, M. Ritter, B. Cosenza, W. Benger, R. Nazmutdinov, M. Probst, J. Mol. Liq. 189 (2014) 20.10.1016/j.molliq.2013.05.033Suche in Google Scholar PubMed PubMed Central
106. R. Schmitz, N. Müller, S. Ullmann, M. Vogel, J. Chem. Phys. 145 (2016) 104703.10.1063/1.4962240Suche in Google Scholar PubMed
107. W. L. Jorgensen, J. Phys. Chem. 90 (1986) 1276–1284.10.1021/j100398a015Suche in Google Scholar
108. O. V. de Oliveira, L. C. G. Freitas, J. Mol. Struct. THEOCHEM 728 (2005) 179.10.1016/j.theochem.2005.05.017Suche in Google Scholar
109. T. S. Gulmen, W. H. Thompson, Langmuir 22 (2006) 10919.10.1021/la062285kSuche in Google Scholar PubMed
110. H. Frauenfelder, G. Chen, J. Berendzen, P. W. Fenimore, H. Jansson, B. H. McMahon, I. R. Stroe, J. Swenson, R. D. Young, Proc. Natl. Acad. Sci. 106 (2009) 5129.10.1073/pnas.0900336106Suche in Google Scholar PubMed PubMed Central
111. W. Doster, Eur. Biophys. J. 37 (2008) 591.10.1007/s00249-008-0274-3Suche in Google Scholar PubMed
112. S. Khodadadi, J. H. Roh, A. Kisliuk, E. Mamontov, M. Tyagi, S. A. Woodson, R. M. Briber, A. P. Sokolov, Biophys. J. 98 (2010) 1321.10.1016/j.bpj.2009.12.4284Suche in Google Scholar PubMed PubMed Central
113. B. Li, D. O. V. Alonso, B. J. Bennion, V. Daggett, J. Am. Chem. Soc. 123 (2001) 11991.10.1021/ja010363eSuche in Google Scholar PubMed
114. D. W. Urry, T. Hugel, M. Seitz, H. E. Gaub, L. Sheiba, J. Dea, J. Xu, T. Parker, Philos. Trans. R. Soc. B 357 (2002) 169.10.1098/rstb.2001.1023Suche in Google Scholar PubMed PubMed Central
115. E. Schreiner, C. Nicolini, B. Ludolph, R. Ravindra, N. Otte, A. Kohlmeyer, R. Rousseau, R. Winter, D. Marx, Phys. Rev. Lett. 92 (2004) 148101.10.1103/PhysRevLett.92.148101Suche in Google Scholar PubMed
116. M. Baer, E. Schreiner, A. Kohlmeyer, R. Rousseau, D. Marx, J. Phys. Chem. B 110 (2006) 3576.10.1021/jp054805aSuche in Google Scholar PubMed
117. S. Weißheit, M. Kahse, A. Tietze, M. Vogel, R. Winter, C. M. Thiele, Z. Phys. Chem. 232 (2018) 1239.10.1515/zpch-2017-1047Suche in Google Scholar
118. M. Vogel, J. Phys. Chem. B 113 (2009) 9386.10.1021/jp901531aSuche in Google Scholar PubMed
119. K. Kämpf, F. Klameth, M. Vogel, J. Chem. Phys. 137 (2012) 205105.10.1063/1.4768046Suche in Google Scholar PubMed
120. G. R. Kneller, K. Hinsen, J. Chem. Phys. 121 (2004) 10278.10.1063/1.1806134Suche in Google Scholar PubMed
121. M. Lagi, P. Baglioni, S.-H. Chen, Phys. Rev. Lett. 103 (2009) 108102.10.1103/PhysRevLett.103.108102Suche in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data
Artikel in diesem Heft
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data