Abstract
FTIR spectroscopy has been used to reveal the effects of different types of cosolvents (TMAO, urea) as well as macromolecular crowding (using the crowding agent Ficoll) on the temperature and pressure dependent structure of poly-L-lysine, poly-D-lysine and their racemic mixture. Compared to the effects of cosolvents on the unfolding transition of proteins, their effects on the α-helix to aggregated β-sheet transition of polylysine are quite small. High hydrostatic pressure has been found to favor the α-helical state over the aggregated β-sheet structure which is reflected in a volume decrease of ΔV=−32 mL mol−1, indicating that the packing mode is more efficient in the α-helical structure. Both, addition of urea and TMAO lead to a decrease in pressure stability of the aggregated β-sheet structure, which is accompanied by a three-fold decrease in ΔV, whereas the macromolecular crowder has little effect on the β-to-α transition. The more than 3 kbar higher β-to-α transition pressure of the racemic mixture compared with PLL confirms the drastic stabilization of β-sheet aggregates if the stereoisomers PLL and PDL are combined. Changes in hydration and packing of the polypeptide occurs upon interaction and fine packing of the polypeptide’s chains of opposed chirality, which are slightly modulated by the properties of cosolute and crowding, only. The underlying solvational and packing mechanisms observed here may be decisive factors responsible for the spontaneous protein aggregation in general and, as such, may shed additional light on the molecular basis of amyloid-associated diseases.
Acknowledgments
We gratefully acknowledge funding from the DFG Research Unit FOR 1583.
References
1. A. L. Fink, Fold. Des. 3 (1998) 9.10.1016/S1359-0278(98)00002-9Suche in Google Scholar
2. M. Fändrich, C. M. Dobson, EMBO J. 21 (2002) 5682.10.1093/emboj/cdf573Suche in Google Scholar PubMed
3. W. Dzwolak, V. Smirnovas, Biophys. Chem. 115 (2005) 49.10.1016/j.bpc.2005.01.003Suche in Google Scholar PubMed
4. W. Dzwolak, T. Muraki, M. Kato, Y. Taniguchi, Biopolymers 73 (2004) 463.10.1002/bip.10582Suche in Google Scholar PubMed
5. W. Dzwolak, R. Ravindra, C. Nicolini, R. Jansen, R. Winter, J. Am. Chem. Soc. 126 (2004) 3762.10.1021/ja039138iSuche in Google Scholar PubMed
6. K. Cieślik-Boczula, Biochimie 137 (2017) 106.10.1016/j.biochi.2017.03.006Suche in Google Scholar PubMed
7. M. Zhang, L. Zhang, Y. Wu, Vib. Spectrosc. 57 (2011) 319.10.1016/j.vibspec.2011.09.007Suche in Google Scholar
8. D. Carrier, H. H. Mantsch, P. T. T. Wong, Biopolymers 29 (1990) 837.10.1002/bip.360290417Suche in Google Scholar
9. A. Mirtič, J. Grdadolnik, Biophys. Chem. 175–176 (2013) 47.10.1016/j.bpc.2013.02.004Suche in Google Scholar PubMed
10. M. Jackson, P. I. Haris, D. Chapman, Biochim. Biophys. Acta 998 (1989) 75.10.1016/0167-4838(89)90121-0Suche in Google Scholar
11. P. T. T. Wong, D. J. Moffat, Appl. Spectrosc. 43 (1989) 1279.10.1366/0003702894203642Suche in Google Scholar
12. M. Bradley, Appl. Note 50733 (2007) 0 (Thermo Fisher Scientific, Madison, WI, USA).Suche in Google Scholar
13. J. L. Arrondo, A. Muga, J. Castresana, F. M. Goñi, Prog. Biophys. Mol. Biol. 59 (1993) 23.10.1016/0079-6107(93)90006-6Suche in Google Scholar PubMed
14. C. Rosin, M. Erlkamp, J. von der Ecken, S. Raunser, R. Winter, Biophys. J. 107 (2014) 2982.10.1016/j.bpj.2014.11.006Suche in Google Scholar PubMed PubMed Central
15. P. H. Schummel, A. Haag, W. Kremer, H. R. Kalbitzer, R. Winter, J. Phys. Chem. B 120 (2016) 6575.10.1021/acs.jpcb.6b04738Suche in Google Scholar PubMed
16. H.-X. Zhou, G. Rivas, A. P. Minton, Annu. Rev. Biophys. 37 (2008) 375.10.1146/annurev.biophys.37.032807.125817Suche in Google Scholar PubMed PubMed Central
17. G. Rivas, A. P. Minton, Trends Biochem. Sci. 41 (2016) 970.10.1016/j.tibs.2016.08.013Suche in Google Scholar PubMed PubMed Central
18. A. V. Mikhonin, N. S. Myshakina, S. V. Bykov, S. A. Asher, V. Pennsyl, J. Am. Chem. Soc. 127 (2005) 7712.10.1021/ja044636sSuche in Google Scholar PubMed
19. V. Smirnovas, R. Winter, T. Funck, W. Dzwolak, J. Phys. Chem. B 109 (2005) 19043.10.1021/jp053283wSuche in Google Scholar PubMed
20. D. R. Canchi, A. E. García, Annu. Rev. Phys. Chem. 64 (2013) 273.10.1146/annurev-physchem-040412-110156Suche in Google Scholar PubMed
21. S. N. Timasheff, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 9721.10.1073/pnas.122225399Suche in Google Scholar PubMed PubMed Central
22. J. Seeliger, K. Estel, N. Erwin, R. Winter, Phys. Chem. Chem. Phys. 15 (2013) 8902.10.1039/c3cp44412kSuche in Google Scholar PubMed
23. M. Erlkamp, S. Grobelny, R. Winter, Phys. Chem. Chem. Phys. 16 (2014) 5965.10.1039/c3cp55040kSuche in Google Scholar PubMed
24. Y. Zhai, R. Winter, ChemPhysChem 14 (2013) 386.10.1002/cphc.201200767Suche in Google Scholar PubMed
25. C. R. Chen, G. I. Makhatadze, Nat. Commun. 8 (2017) 14561.10.1038/ncomms14561Suche in Google Scholar PubMed
26. C. A. Royer, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1595 (2002) 201.10.1016/S0167-4838(01)00344-2Suche in Google Scholar
27. J. Roche, J. A. Caro, D. R. Norberto, P. Barthe, C. Roumestand, J. L. Schlessman, A. E. Garcia, B. E. García-Moreno, C. A. Royer, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 6945.10.1073/pnas.1200915109Suche in Google Scholar PubMed PubMed Central
28. S. Neumaier, M. Büttner, A. Bachmann, T. Kiefhaber, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 20988.10.1073/pnas.1317973110Suche in Google Scholar PubMed PubMed Central
29. J. L. Silva, A. C. Oliveira, T. C. R. G. Vieira, G. A. P. de Oliveira, M. C. Suarez, D. Foguel, Chem. Rev. 114 (2014) 7239.10.1021/cr400204zSuche in Google Scholar PubMed
30. B. R. Shah, A. Maeno, H. Matsuo, H. Tachibana, K. Akasaka, Biophys J. 101 (2012) 121.10.1016/j.bpj.2011.10.041Suche in Google Scholar PubMed PubMed Central
31. T. Q. Luong, S. Kapoor, R. Winter, ChemPhysChem 16 (2015) 3555.10.1002/cphc.201500669Suche in Google Scholar PubMed
32. G. A. P. de Oliveira, M. de A. Marques, C. Cruzeiro-Silva, Y. Cordeiro, C. Schuabb, A. H. Moraes, R. Winter, H. Oschkinat, D. Foguel, M. S. Freitas, J. L. Silva, Sci. Rep. 6 (2016) 37990.10.1038/srep37990Suche in Google Scholar PubMed PubMed Central
33. S. Grudzielanek, V. Smirnovas, R. Winter, J. Mol. Biol. 356 (2006) 497.10.1016/j.jmb.2005.11.075Suche in Google Scholar PubMed
34. R. Mishra, R. Winter, Angew. Chem. Int. Ed. 47 (2008) 6518.10.1002/anie.200802027Suche in Google Scholar PubMed
35. Y. Cordeiro, J. Kraineva, R. Ravindra, L. M. T. R. Lima, M. P. B. Gomes, D. Foguel, R. Winter, J. L. Silva, J. Biol. Chem. 279 (2004) 32354.10.1074/jbc.M404295200Suche in Google Scholar PubMed
36. D. Foguel, M. C. Suarez, A. D. Ferrao-Gonzales, T. C. R. Porto, L. Palmieri, C. M. Einsiedler, L. R. Andrade, H. A. Lashuel, P. T. Lansbury, J. W. Kelly J. L. Silva, Proc. Natl. Acad. Sci. U.S.A. 17 (2003) 9831.10.1073/pnas.1734009100Suche in Google Scholar PubMed PubMed Central
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data
Artikel in diesem Heft
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data