Home Physical Sciences A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
Article
Licensed
Unlicensed Requires Authentication

A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples

  • Martin Brodrecht , Edda Klotz , Christina Lederle , Hergen Breitzke , Bernd Stühn , Michael Vogel EMAIL logo and Gerd Buntkowsky EMAIL logo
Published/Copyright: December 8, 2017

Abstract

The processes of drying mesoporous silica materials and their refilling with water have been examined by magic-angle spinning (MAS) solid-state NMR, broadband dielectric spectroscopy (BDS), and differential scanning calorimetry (DSC). It is shown that different drying protocols strongly influence the amount and types of hydroxy-species inside the pores. It is found that a very good vacuum (≈10−6 bar) is necessary to remove all H2O molecules from the silica matrices in order to accurately refill them with very low amounts of water such as e.g. a mono- or submonolayer coverage of the surface. Time-dependent 1H-NMR-spectra recorded after loading the samples indicate a very specific course of water first existing in a bulk-like form inside the pores and then distributing itself through the pores by hydrogen bonding to surface silanol groups. After assuring accurate sample loading, we were able to investigate lowly hydrated samples of water confined in MCM-41 via DCS and BDS at temperatures below the freezing point of free bulk-water (0°C) and find two non-crystallizing water species with Arrhenius behavior and activation energies of 0.53 eV (51.1 kJ/mol).

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft in the framework of Forschergruppe FOR 1583 through grants Bu-911/18-1/2, STU 191/6-2 and Vo-905/8-1/2 is gratefully acknowledged.

References

1. P. H. Poole, F. Sciortino, U. Essmann, H. E. Stanley, Nature 360 (1992) 324.10.1038/360324a0Search in Google Scholar

2. O. Mishima, H. E. Stanley, Nature 396 (1998) 329.10.1038/24540Search in Google Scholar

3. S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 116 (2016) 7608.10.1021/acs.chemrev.5b00609Search in Google Scholar PubMed

4. E. Gedat, A. Schreiber, J. Albrecht, T. Emmler, I. Shenderovich, G. H. Findenegg, H. H. Limbach, G. Buntkowsky, J. Phys. Chem. B 106 (2002) 1977.10.1021/jp012391pSearch in Google Scholar

5. W. Masierak, T. Emmler, E. Gedat, A. Schreiber, G. H. Findenegg, G. Buntkowsky, J. Phys. Chem. B 108 (2004) 18890.10.1021/jp047348rSearch in Google Scholar

6. C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, J. Phys. Condens. Mat. 18 (2006) 15.10.1088/0953-8984/18/6/R01Search in Google Scholar PubMed

7. M. Febles, N. Perez-Hernandez, C. Perez, M. L. Rodriguez, C. Foces-Foces, M. V. Roux, E. Q. Morales, G. Buntkowsky, H. H. Limbach, J. D. Martin, J. Am. Chem. Soc. 128 (2006) 10008.10.1021/ja063223jSearch in Google Scholar PubMed

8. R. Bergman, J. Swenson, Nature 403 (2000) 283.10.1038/35002027Search in Google Scholar PubMed

9. H. Jansson, J. Swenson, Eur. Phys. J. E 12 (2003) 51.10.1140/epjed/e2003-01-013-5Search in Google Scholar PubMed

10. A. Faraone, L. Liu, C.-Y. Mou, C.-W. Yen, S.-H. Chen, J. Chem. Phys. 121 (2004) 10843.10.1063/1.1832595Search in Google Scholar PubMed

11. A. Spanoudaki, B. Albela, L. Bonneviot, M. Peyrard, Eur. Phys. J. E 17 (2005) 21.10.1140/epje/i2004-10101-6Search in Google Scholar PubMed

12. J. Hedström, J. Swenson, R. Bergman, H. Jansson, S. Kittaka, Eur. Phys. J. Spec. Top. 141 (2007) 53.10.1140/epjst/e2007-00016-0Search in Google Scholar

13. J. Sjöström, J. Swenson, R. Bergman, S. Kittaka, J. Chem. Phys. 128 (2008) 154503.10.1063/1.2902283Search in Google Scholar PubMed

14. F. Mallamace, C. Corsaro, P. Baglioni, E. Fratini, S.-H. Chen, J. Phys.: Condens. Matter 24 (2012) 064103.10.1088/0953-8984/24/6/064103Search in Google Scholar PubMed

15. J. Swenson, S. Cerveny, J. Phys.: Condens. Matter 27 (2014) 033102.10.1088/0953-8984/27/3/033102Search in Google Scholar PubMed

16. A. Vyalikh, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H. H. Limbach, G. Buntkowsky, Solid State Nucl. Mag. 28 (2005) 117.10.1016/j.ssnmr.2005.07.001Search in Google Scholar PubMed

17. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C.-Y. Mou, S. H. Chen, J. Chem. Phys. 124 (2006) 161102.10.1063/1.2193159Search in Google Scholar PubMed

18. G. Buntkowsky, H. Breitzke, A. Adamczyk, F. Roelofs, T. Emmler, E. Gedat, B. Grünberg, Y. Xu, H.-H. Limbach, I. Shenderovich, Phys. Chem. Chem. Phys. 9 (2007) 4843.10.1039/b707322dSearch in Google Scholar PubMed

19. A. Vyalikh, T. Emmler, B. Grünberg, Y. Xu, I. Shenderovich, G. H. Findenegg, H. H. Limbach, G. Buntkowsky, Z. Phys. Chem. 221 (2007) 155.10.1524/zpch.2007.221.1.155Search in Google Scholar

20. A. Vyalikh, T. Emmler, I. Shenderovich, Y. Zeng, G. H. Findenegg, G. Buntkowsky, Phys. Chem. Chem. Phys. 9 (2007) 2249.10.1039/b617744aSearch in Google Scholar PubMed

21. M. Sattig, M. Vogel, J. Phys. Chem. Lett. 5 (2014) 174.10.1021/jz402539rSearch in Google Scholar PubMed

22. M. F. Harrach, B. Drossel, W. Winschel, T. Gutmann, G. Buntkowsky, J. Phys. Chem. C 119 (2015) 28961.10.1021/acs.jpcc.5b09537Search in Google Scholar

23. M. Rosenstihl, K. Kämpf, F. Klameth, M. Sattig, M. Vogel, J. Non-Cryst. Solids 407 (2015) 449.10.1016/j.jnoncrysol.2014.08.040Search in Google Scholar

24. S. Jähnert, F. V. Chávez, G. Schaumann, A. Schreiber, M. Schönhoff, G. Findenegg, Phys. Chem. Chem. Phys. 10 (2008) 6039.10.1039/b809438cSearch in Google Scholar PubMed

25. B. Grünberg, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H.-H. Limbach, G. Buntkowsky, Chem. Eur. J. 10 (2004) 5689.10.1002/chem.200400351Search in Google Scholar

26. R. Richert, Annu. Rev. Phys. Chem. 62 (2011) 65.10.1146/annurev-physchem-032210-103343Search in Google Scholar PubMed

27. B. Grünberg, A. Grünberg, H.-H. Limbach, G. Buntkowsky, App. Magn. Res. 44 (2013) 189.10.1007/s00723-012-0393-ySearch in Google Scholar

28. M. Grün, K. K. Unger, A. Matsumoto, K. Tsutsumi, Microporous Mesoporous Mater. 27 (1999) 207.10.1016/S1387-1811(98)00255-8Search in Google Scholar

29. D. G. Cory, W. M. Ritchey, J. Magn. Res. 80 (1988) 128.10.1016/0022-2364(88)90064-9Search in Google Scholar

30. H. Wagner, R. Richert, J. Phys. Chem. B 103 (1999) 4071.10.1021/jp9838947Search in Google Scholar

31. S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, T. Yamaguchi, Phys. Chem. Chem. Phys. 8 (2006) 3223.10.1039/b518365kSearch in Google Scholar PubMed

32. S. Cerveny, G. A. Schwartz, R. Bergman, J. Swenson, Phys. Rev. Lett. 93 (2004) 245702.10.1103/PhysRevLett.93.245702Search in Google Scholar PubMed

33. J. Swenson, H. Jansson, R. Bergman, Phys. Rev. Lett. 96 (2006) 247802.10.1103/PhysRevLett.96.247802Search in Google Scholar PubMed

Received: 2017-09-08
Accepted: 2017-11-09
Published Online: 2017-12-08
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2017-1030/html
Scroll to top button