A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
-
Martin Brodrecht
, Edda Klotz , Christina Lederle , Hergen Breitzke , Bernd Stühn , Michael Vogeland Gerd Buntkowsky
Abstract
The processes of drying mesoporous silica materials and their refilling with water have been examined by magic-angle spinning (MAS) solid-state NMR, broadband dielectric spectroscopy (BDS), and differential scanning calorimetry (DSC). It is shown that different drying protocols strongly influence the amount and types of hydroxy-species inside the pores. It is found that a very good vacuum (≈10−6 bar) is necessary to remove all H2O molecules from the silica matrices in order to accurately refill them with very low amounts of water such as e.g. a mono- or submonolayer coverage of the surface. Time-dependent 1H-NMR-spectra recorded after loading the samples indicate a very specific course of water first existing in a bulk-like form inside the pores and then distributing itself through the pores by hydrogen bonding to surface silanol groups. After assuring accurate sample loading, we were able to investigate lowly hydrated samples of water confined in MCM-41 via DCS and BDS at temperatures below the freezing point of free bulk-water (0°C) and find two non-crystallizing water species with Arrhenius behavior and activation energies of 0.53 eV (51.1 kJ/mol).
Acknowledgements
Financial support by the Deutsche Forschungsgemeinschaft in the framework of Forschergruppe FOR 1583 through grants Bu-911/18-1/2, STU 191/6-2 and Vo-905/8-1/2 is gratefully acknowledged.
References
1. P. H. Poole, F. Sciortino, U. Essmann, H. E. Stanley, Nature 360 (1992) 324.10.1038/360324a0Search in Google Scholar
2. O. Mishima, H. E. Stanley, Nature 396 (1998) 329.10.1038/24540Search in Google Scholar
3. S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 116 (2016) 7608.10.1021/acs.chemrev.5b00609Search in Google Scholar PubMed
4. E. Gedat, A. Schreiber, J. Albrecht, T. Emmler, I. Shenderovich, G. H. Findenegg, H. H. Limbach, G. Buntkowsky, J. Phys. Chem. B 106 (2002) 1977.10.1021/jp012391pSearch in Google Scholar
5. W. Masierak, T. Emmler, E. Gedat, A. Schreiber, G. H. Findenegg, G. Buntkowsky, J. Phys. Chem. B 108 (2004) 18890.10.1021/jp047348rSearch in Google Scholar
6. C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, J. Phys. Condens. Mat. 18 (2006) 15.10.1088/0953-8984/18/6/R01Search in Google Scholar PubMed
7. M. Febles, N. Perez-Hernandez, C. Perez, M. L. Rodriguez, C. Foces-Foces, M. V. Roux, E. Q. Morales, G. Buntkowsky, H. H. Limbach, J. D. Martin, J. Am. Chem. Soc. 128 (2006) 10008.10.1021/ja063223jSearch in Google Scholar PubMed
8. R. Bergman, J. Swenson, Nature 403 (2000) 283.10.1038/35002027Search in Google Scholar PubMed
9. H. Jansson, J. Swenson, Eur. Phys. J. E 12 (2003) 51.10.1140/epjed/e2003-01-013-5Search in Google Scholar PubMed
10. A. Faraone, L. Liu, C.-Y. Mou, C.-W. Yen, S.-H. Chen, J. Chem. Phys. 121 (2004) 10843.10.1063/1.1832595Search in Google Scholar PubMed
11. A. Spanoudaki, B. Albela, L. Bonneviot, M. Peyrard, Eur. Phys. J. E 17 (2005) 21.10.1140/epje/i2004-10101-6Search in Google Scholar PubMed
12. J. Hedström, J. Swenson, R. Bergman, H. Jansson, S. Kittaka, Eur. Phys. J. Spec. Top. 141 (2007) 53.10.1140/epjst/e2007-00016-0Search in Google Scholar
13. J. Sjöström, J. Swenson, R. Bergman, S. Kittaka, J. Chem. Phys. 128 (2008) 154503.10.1063/1.2902283Search in Google Scholar PubMed
14. F. Mallamace, C. Corsaro, P. Baglioni, E. Fratini, S.-H. Chen, J. Phys.: Condens. Matter 24 (2012) 064103.10.1088/0953-8984/24/6/064103Search in Google Scholar PubMed
15. J. Swenson, S. Cerveny, J. Phys.: Condens. Matter 27 (2014) 033102.10.1088/0953-8984/27/3/033102Search in Google Scholar PubMed
16. A. Vyalikh, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H. H. Limbach, G. Buntkowsky, Solid State Nucl. Mag. 28 (2005) 117.10.1016/j.ssnmr.2005.07.001Search in Google Scholar PubMed
17. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C.-Y. Mou, S. H. Chen, J. Chem. Phys. 124 (2006) 161102.10.1063/1.2193159Search in Google Scholar PubMed
18. G. Buntkowsky, H. Breitzke, A. Adamczyk, F. Roelofs, T. Emmler, E. Gedat, B. Grünberg, Y. Xu, H.-H. Limbach, I. Shenderovich, Phys. Chem. Chem. Phys. 9 (2007) 4843.10.1039/b707322dSearch in Google Scholar PubMed
19. A. Vyalikh, T. Emmler, B. Grünberg, Y. Xu, I. Shenderovich, G. H. Findenegg, H. H. Limbach, G. Buntkowsky, Z. Phys. Chem. 221 (2007) 155.10.1524/zpch.2007.221.1.155Search in Google Scholar
20. A. Vyalikh, T. Emmler, I. Shenderovich, Y. Zeng, G. H. Findenegg, G. Buntkowsky, Phys. Chem. Chem. Phys. 9 (2007) 2249.10.1039/b617744aSearch in Google Scholar PubMed
21. M. Sattig, M. Vogel, J. Phys. Chem. Lett. 5 (2014) 174.10.1021/jz402539rSearch in Google Scholar PubMed
22. M. F. Harrach, B. Drossel, W. Winschel, T. Gutmann, G. Buntkowsky, J. Phys. Chem. C 119 (2015) 28961.10.1021/acs.jpcc.5b09537Search in Google Scholar
23. M. Rosenstihl, K. Kämpf, F. Klameth, M. Sattig, M. Vogel, J. Non-Cryst. Solids 407 (2015) 449.10.1016/j.jnoncrysol.2014.08.040Search in Google Scholar
24. S. Jähnert, F. V. Chávez, G. Schaumann, A. Schreiber, M. Schönhoff, G. Findenegg, Phys. Chem. Chem. Phys. 10 (2008) 6039.10.1039/b809438cSearch in Google Scholar PubMed
25. B. Grünberg, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H.-H. Limbach, G. Buntkowsky, Chem. Eur. J. 10 (2004) 5689.10.1002/chem.200400351Search in Google Scholar
26. R. Richert, Annu. Rev. Phys. Chem. 62 (2011) 65.10.1146/annurev-physchem-032210-103343Search in Google Scholar PubMed
27. B. Grünberg, A. Grünberg, H.-H. Limbach, G. Buntkowsky, App. Magn. Res. 44 (2013) 189.10.1007/s00723-012-0393-ySearch in Google Scholar
28. M. Grün, K. K. Unger, A. Matsumoto, K. Tsutsumi, Microporous Mesoporous Mater. 27 (1999) 207.10.1016/S1387-1811(98)00255-8Search in Google Scholar
29. D. G. Cory, W. M. Ritchey, J. Magn. Res. 80 (1988) 128.10.1016/0022-2364(88)90064-9Search in Google Scholar
30. H. Wagner, R. Richert, J. Phys. Chem. B 103 (1999) 4071.10.1021/jp9838947Search in Google Scholar
31. S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, T. Yamaguchi, Phys. Chem. Chem. Phys. 8 (2006) 3223.10.1039/b518365kSearch in Google Scholar PubMed
32. S. Cerveny, G. A. Schwartz, R. Bergman, J. Swenson, Phys. Rev. Lett. 93 (2004) 245702.10.1103/PhysRevLett.93.245702Search in Google Scholar PubMed
33. J. Swenson, H. Jansson, R. Bergman, Phys. Rev. Lett. 96 (2006) 247802.10.1103/PhysRevLett.96.247802Search in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data
Articles in the same Issue
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data