Abstract
We have developed a flexible experimental setup to conduct triplet solvation dynamics (TSD) experiments. The setup is capable of exciting dyes at 355, 320 and 266 nm. Phosphorescence spectra can be recorded up to a 10 ns-resolution usually covering three decades using a grating spectrograph and a CCD camera. In this contribution, we describe the experimental setup as well as first investigations on water-alcohol mixtures, microemulsions and new dyes for TSD, i.e. naphthalene derivates, which take full advantage of this experimental method sensitive to the local environment of the dyes.
Acknowledgments
Financial support of the Deutsche Forschungsgemeinschaft in the framework of the research unit FOR 1583 under grant no BL 1192/1 is gratefully acknowledged.
References
1. D. Leythaeuser, R. G. Schaefer, A. Yukler, Nature 284 (1980) 522.10.1038/284522a0Search in Google Scholar
2. W. Sparreboom, A. van den Berg, J. C. T. Eijkel, New J. Phys. 12 (2010) 015004.10.1088/1367-2630/12/1/015004Search in Google Scholar
3. D. Torreggiani, G. Bertolo, J. Food Eng. 49 (2001) 247.10.1016/S0260-8774(00)00210-7Search in Google Scholar
4. P. W. Fenimore, H. Frauenfelder, B. H. McMahon, F. G. Parak, Proc. Natl. Acad. Sci. USA 99 (2002) 16047.10.1073/pnas.212637899Search in Google Scholar PubMed PubMed Central
5. W. Doster, Eur. Biophys. J. 37 (2008) 591.10.1007/s00249-008-0274-3Search in Google Scholar PubMed
6. M. Arndt, R. Stannarius, H. Groothues, E. Hempel, F. Kremer, Phys. Rev. Lett. 79 (1997) 2077.10.1103/PhysRevLett.79.2077Search in Google Scholar
7. B. Frick, C. Alba-Simionesco, G. Dosseh, C. LeQuellec, A. J. Moreno, J. Colmenero, A. Schönhals, R. Zorn, K. Chrissopoulou, S. H. Anastasiadis, K. Dalnoki-Veress, J. Non-Cryst. Solids 351 (2005) 2657.10.1016/j.jnoncrysol.2005.03.061Search in Google Scholar
8. C. Alba-Simionesco, G. Dosseh, E. Dumont, B. Frick, B. Geil, D. Morineau, V. Teboul, Y. Xia, Eur. Phys. J. E 12 (2003) 19.10.1140/epje/i2003-10055-1Search in Google Scholar PubMed
9. L.-M. Wang, F. He, R. Richert, Phys. Rev. Lett. 92 (2004) 095701.10.1103/PhysRevLett.92.095701Search in Google Scholar PubMed
10. D. Morineau, X. Yongde, C. Alba-Simionesco, J. Chem. Phys. 117 (2002) 8966.10.1063/1.1514664Search in Google Scholar
11. B. Frick, M. Koza, R. Zorn (Eds.), 2nd International Workshop on Dynamics in Confinement, Eur. Phys. J. E 12 (2003).10.1140/epje/i2003-10069-7Search in Google Scholar PubMed
12. M. Koza, B. Frick, R. Zorn (Eds.), 3rd International Workshop on Dynamics in Confinement, Eur. Phys. J. Special Topics 141 (2007).10.1140/epjst/e2007-00007-1Search in Google Scholar
13. R. Zorn, L. van Eijck, M. M. Koza, B. Frick (Eds.), Progress in Dynamics in Confinement, Eur. Phys. J. Special Topics 189 (2010).10.1140/epjst/e2010-01306-0Search in Google Scholar
14. G. Buntkowsky, H. Breitzke, A. Adamczyk, F. Roelofs, T. Emmler, E. Gedat, B. Grünberg, Y. Xu, H.-H. Limbach, I. Shenderovich, A. Vyalikh, G. Findenegg, Phys. Chem. Chem. Phys. 12 (2007) 4843.10.1039/b707322dSearch in Google Scholar PubMed
15. J.-P. Korb, L. Malier, F. Cros, S. Xu, J. Jonas, Phys. Rev. Lett. 77 (1996) 2312.10.1103/PhysRevLett.77.2312Search in Google Scholar PubMed
16. T. Blochowicz, C. Karle, A. Kudlik, P. Medick, I. Roggatz, M. Vogel, C. Tschirwitz, J. Wolber, J. Senker, E. Rössler, J. Phys. Chem. B 103 (1999) 4032.10.1021/jp983754xSearch in Google Scholar
17. S. Gradmann, P. Medick, E. A. Rössler, J. Phys. Chem. B 113 (2009) 8443.10.1021/jp9027518Search in Google Scholar PubMed
18. R. Zorn, M. Mayorova, D. Richter, B. Frick, Soft Matter 4 (2008) 522.10.1039/B713465GSearch in Google Scholar
19. T. Blochowicz, E. Gouirand, A. Fricke, T. Spehr, B. Stühn, B. Frick, Chem. Phys. Lett. 475 (2009) 171.10.1016/j.cplett.2009.05.058Search in Google Scholar
20. S. Schramm, T. Blochowicz, E. Gouirand, R. Wipf, B. Stühn, Y. Chushkin, J. Chem. Phys. 132 (2010) 224505.10.1063/1.3431537Search in Google Scholar PubMed
21. T. Blochowicz, S. A. Lusceac, P. Gutfreund, S. Schramm, B. Stühn, J. Phys. Chem. B 115 (2011) 1623.10.1021/jp110506zSearch in Google Scholar PubMed
22. A. Faraone, L. Liu, C.-Y. Mou, C.-W. Yen, S.-H. Chen, J. Chem. Phys. 121 (2004) 10843.10.1063/1.1832595Search in Google Scholar PubMed
23. F. Kremer, A. Huwe, M. Arndt, P. Behrens, W. Schwieger, J. Phys.: Cond. Matter 11 (1999) A175.10.1088/0953-8984/11/10A/013Search in Google Scholar
24. A. Schönhals, H. Goering, C. Schick, B. Frick, M. Mayorova, R. Zorn, Eur. Phys. J. Special Topics 141 (2007) 255.10.1140/epjst/e2007-00049-3Search in Google Scholar
25. J. Czwartos, M. Sliwinska-Bartkowiak, B. Coasne, K. E. Gubbins, Pure Appl. Chem. 81 (2009) 1953.10.1351/PAC-CON-09-01-15Search in Google Scholar
26. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62 (1999) 1573.10.1088/0034-4885/62/12/201Search in Google Scholar
27. J. Swenson, K. Elamin, H. Jansson, S. Kittaka, Chem. Phys. 424 (2013) 20.10.1016/j.chemphys.2012.11.014Search in Google Scholar
28. R. Richert, J. Chem. Phys. 113 (2000) 8404.10.1063/1.1319174Search in Google Scholar
29. R. Richert, F. Stickel, R. S. Fee, M. Maroncelli, Chem. Phys. Lett. 229 (1994) 302.10.1016/0009-2614(94)01032-3Search in Google Scholar
30. W. Wen, R. Richert, J. Chem. Phys. 131 (2009) 084710.10.1063/1.3205408Search in Google Scholar PubMed
31. V. Talluto, Triplett-Solvatationsdynamik als Methode zur Untersuchung der molekularen Dynamik von Flüssigkeiten unter räumlicher Einschränkung, PhD Thesis, TU Darmstadt (2016).Search in Google Scholar
32. V. Talluto, T. Blochowicz, T. Walther, Appl. Phys. B 122 (2016) 1.10.1007/s00340-016-6404-1Search in Google Scholar
33. F. J. Northrup, T. J. Sears, Ann. Rev. Phys. Chem. 43 (1992) 127.10.1146/annurev.pc.43.100192.001015Search in Google Scholar
34. N. V. Vitanov, A. A. Rangelov, B. W. Shore, K. Bergmann, Rev. Mod. Phys. 89 (2017) 1.10.1103/RevModPhys.89.015006Search in Google Scholar
35. S. G. Hadley, J. Phys. Chem. 76 (1971) 2083.10.1021/j100683a003Search in Google Scholar
36. S. S. N. Murthy, J. Phys. Chem. B 104 (2000) 6955.10.1021/jp9931915Search in Google Scholar
37. S. Capaccioli, K. L. Ngai, N. Shinayshiki, J. Phys. Chem. B 111 (2007) 8197.10.1021/jp071857mSearch in Google Scholar PubMed
38. N. Shinyashiki, S. Sudo, S. Yagihara, A. Spanoudaki, A. Kyritsis, P. Pissis, J. Phys.: Cond. Matter 19 (2007) 205113.10.1088/0953-8984/19/20/205113Search in Google Scholar
39. S. Cerveny, Ã. Alegria, J. Colmenero, Phys. Rev. E 77 (2008) 031803.10.1103/PhysRevE.77.031803Search in Google Scholar PubMed
40. J. Sjöström, J. Mattsson, R. Bergman, E. Johansson, K. Josefsson, D. Svantesson, J. Swenson, Phys. Chem. Chem. Phys. 12 (2010) 10452.10.1039/c001275kSearch in Google Scholar PubMed
41. S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney, A. K. Soper, Nature 416 (2002) 829.10.1038/416829aSearch in Google Scholar PubMed
42. A. Wakisaka, T. Ohki, Faraday Discuss 129 (2005) 231.10.1039/B405391ESearch in Google Scholar PubMed
43. Y. Hayashi, A. Puzenko, Y. Feldman, J. Non-Cryst. Solids 352 (2006) 4696.10.1016/j.jnoncrysol.2006.01.113Search in Google Scholar
44. D. Sauer, B. Schuster, M. Rosenstihl, S. Schneider, V. Talluto, T. Walther, T. Blochowicz, B. Stühn, M. Vogel, J. Chem. Phys. 140 (2014) 114503.10.1063/1.4868003Search in Google Scholar PubMed
45. M. Vogel, E. Rössler, J. Chem. Phys. 114 (2001) 5802.10.1063/1.1351159Search in Google Scholar
46. M. Lannert, A. Müller, E. Gouirand, V. Talluto, M. Rosenstihl, T. Walther, B. Stühn, T. Blochowicz, M. Vogel, J. Chem. Phys. 145 (2016) 234511.10.1063/1.4972009Search in Google Scholar PubMed
47. T. Blochowicz, S. Schramm, S. Lusceac, M. Vogel, B. Stühn, P. Gutfreund, B. Frick, Phys. Rev. Lett. 109 (2012) 035702.10.1103/PhysRevLett.109.035702Search in Google Scholar PubMed
48. R. Richert, M. Yang, J. Phys. Chem. B 107 (2003) 895.10.1021/jp022039rSearch in Google Scholar
49. R. Richert, A. Wagner, J. Phys. Chem. 95 (1991) 10115.10.1021/j100177a090Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data
Articles in the same Issue
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data