Startseite Naturwissenschaften Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement

  • Björn Kuttich EMAIL logo , Alexander Matt , Andreas Weber , Ann-Kathrin Grefe , Laura Vietze und Bernd Stühn
Veröffentlicht/Copyright: 8. Dezember 2017

Abstract

Polyethylene glycol is water soluble and forms an eutectic system with water. The eutectic temperature is −19 °C for M=1500 g mol−1 and increases with molecular weight. The dielectric relaxation spectrum of the mixtures exhibits a strong loss maximum in ϵ″ (ω) similar to pure water. Relaxation time increases with the addition of PEG. Activation energies exhibit a maximum of 0.35 eV at molar fraction χp≈0.2. This compares well with results on ethanol water mixtures. Adding PEG molecules to nanoscopic water droplets of inverse microemulsions has only small impact on the bending modulus κ of a non-ionic microemulsion. In AOT based microemulsions an increase or decrease of κ is found in dependence on the size of the droplets. This is in accordance with the variation of the dynamic percolation transition in the same systems.

Acknowledgement

Financial support by the “Deutsche Forschungsgemeinschaft” DFG through the “DFG-Forschergruppe 1583” by Project no. STU191/6-1 is thankfully acknowledged. For the performance of neutron scattering measurements we are very grateful to Oxana Ivanova and the Jülich Centre of Neutron Research (JCNS) at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany as well as Isabelle Grillo and Peter Falus and the Institut Laue-Langevin, Grenoble, France.

References

1. W. Sparreboom, A. van den Berg, J. C. T. Eijkel, New J. Phys. 12 (2010) 015004.10.1088/1367-2630/12/1/015004Suche in Google Scholar

2. M. Y. Lin, S. K. Sinha, J. M. Drake, X.-L. Wu, P. Thiyagarajan, H. B. Stanley, Phys. Rev. Lett. 72 (1994) 2207.10.1103/PhysRevLett.72.2207Suche in Google Scholar PubMed

3. C. L. Jackson, G. B. McKenna, Chem. Mater. 8 (1996) 2128.10.1021/cm9601188Suche in Google Scholar

4. K. Binder, J. Non-Equilib. Thermodyn. 23 (1998) 1.10.1515/jnet.1998.23.1.1Suche in Google Scholar

5. W. F. Marshall, A. Straight, J. F. Marko, J. Swedlow, A. Dernburg, A. Belmont, A. W. Murray, D. A. Agard, J. W. Sedat, Curr. Biol. 7 (1997) 930.10.1016/S0960-9822(06)00412-XSuche in Google Scholar PubMed

6. M. S. Cheung, D. Klimov, D. Thirumalai, Proc. Natl. Acad. Sci. USA 102 (2005) 4753.10.1073/pnas.0409630102Suche in Google Scholar

7. H.-X. Zhou, G. Rivas, A. P. Minton, Annu. Rev. Biophys. 37 (2008) 375.10.1146/annurev.biophys.37.032807.125817Suche in Google Scholar PubMed

8. W. Reisner, J. N. Pedersen, R. H. Austin, Rep. Prog. Phys. 75 (2012) 106601.10.1088/0034-4885/75/10/106601Suche in Google Scholar PubMed

9. L. Zhu, B. R. Mimnaugh, Q. Ge, R. P. Quirk, S. Z. D. Cheng, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu, Polymer 42 (2001) 9121.10.1016/S0032-3861(01)00394-9Suche in Google Scholar

10. P. Chi, Z. Wang, B. Li, A.-C. Shi, Langmuir 27 (2011) 11683.10.1021/la202448cSuche in Google Scholar PubMed

11. B. Kuttich, O. Ivanova, I. Grillo, B. Stühn, J. Chem. Phys. 145 (2016) 164904.10.1063/1.4966155Suche in Google Scholar PubMed

12. A. Luzar, D. Chandler, J. Chem. Phys. 98 (1993) 8160.10.1063/1.464521Suche in Google Scholar

13. T. Takamuku, M. Tabata, A. Yamaguchi, J. Nishimoto, M. Kumamoto, H. Wakita, T. Yamaguchi, J. Phys. Chem. B 102 (1998) 8880.10.1021/jp9824297Suche in Google Scholar

14. D. Sauer, B. Schuster, M. Rosenstihl, S. Schneider, V. Talluto, T. Walther, T. Blochowicz, B. Stühn, M. Vogel, J. Chem. Phys. 140 (2014) 114503.10.1063/1.4868003Suche in Google Scholar PubMed

15. R. Schmitz, N. Müller, S. Ullmann, M. Vogel, J. Chem. Phys. 145 (2016) 104703.10.1063/1.4962240Suche in Google Scholar PubMed

16. P. Petong, R. Pottel, U. Kaatze, J. Phys. Chem. 104 (2000) 7420.10.1021/jp001393rSuche in Google Scholar

17. S. Yu. Noskov, G. Lamoureux, B. Roux, J. Phys. Chem. B 109 (2005) 6705.10.1021/jp045438qSuche in Google Scholar PubMed

18. K. Elamin, J. Sjöström, H. Jansson, J. Swenson, J. Chem. Phys. 136 (2012) 104508.10.1063/1.3692609Suche in Google Scholar PubMed

19. M. A. Van Dijk, J. G. H. Joosten, Y. K. Levine, D. Bedeaux, J.Phys. Chem. 93 (1989) 2506.10.1021/j100343a054Suche in Google Scholar

20. M. Kotlarchyk, S. Chen, J. S. Huang, J. Phys. Chem. 86 (1982) 3273.10.1021/j100214a001Suche in Google Scholar

21. B. Farago, D. Richter, J. Huang, S. Safran, S. Milner, Phys. Rev. Lett. 65 (1990) 3348.10.1103/PhysRevLett.65.3348Suche in Google Scholar PubMed

22. A. Adla, H. Fuess, C. Trautmann, J. Polym. Sci. B Polym. Phys. 41 (2003) 2892.10.1002/polb.10614Suche in Google Scholar

23. M. Engel, B. Stühn, J. J. Schneider, T. Cornelius, M. Naumann, Appl. Phys. A 97 (2009) 99.10.1007/s00339-009-5346-4Suche in Google Scholar

24. M. Engel, B. Stühn, J. Chem. Phys. 132 (2010) 224502.10.1063/1.3429312Suche in Google Scholar PubMed

25. C. D. Dewhurst, Meas. Sci. Technol. 19 (2008) 034007.10.1088/0957-0233/19/3/034007Suche in Google Scholar

26. L. Huang, K, J. Polym. Sci. B Polym. Phys. 39 (2001) 496.10.1002/1099-0488(20010301)39:5<496::AID-POLB1023>3.0.CO;2-HSuche in Google Scholar

27. P. Smith, A. J. Pennings, Polymer 15 (1974) 413.10.1016/0032-3861(74)90103-7Suche in Google Scholar

28. T. Sato, H. Niwa, A. Chiba, R. Nozaki, J. Chem. Phys. 108 (1998) 4138.10.1063/1.475812Suche in Google Scholar

29. R. Buchner, J. Barthel, J. Stauber, Chem. Phys. Lett. 306 (1999) 57.10.1016/S0009-2614(99)00455-8Suche in Google Scholar

30. U. Kaatze, J. Solution Chem. 26 (1997) 1049.10.1007/BF02768829Suche in Google Scholar

31. E. Hanke, U. Schulz, U. Kaatze, ChemPhysChem 8 (2007) 553.10.1002/cphc.200600601Suche in Google Scholar PubMed

32. J. A. Forrest, K. Dalnoki-Veress, J. R. Dutcher, Phys. Rev. E, 56 (1997) 5705.10.1103/PhysRevE.56.5705Suche in Google Scholar

33. M. Alcoutlabi, G. B. McKenna, J. Phys. Condens. Matter 17 (2005) R461.10.1088/0953-8984/17/15/R01Suche in Google Scholar

34. S. Napolitano, E. Glynos, N. B. Tito, Rep. Prog. Phys. 80 (2017) 036602.10.1088/1361-6633/aa5284Suche in Google Scholar PubMed

35. M. Kraska, B. Kuttich, B. Stühn, in: S. C. Müller, J. Parisi (Eds.), Bottom-Up Self-Organization in Supramolecular Soft Matter Principles, Volume 217 of Springer Series in Materials Science, Springer International Publishing, Cham, Switzerland (2015).Suche in Google Scholar

36. T. Spehr, B. Frick, I. Grillo, B. Stühn, J. Phys. Condens. Matter 20 (2008) 104204.10.1088/0953-8984/20/10/104204Suche in Google Scholar

37. T. Spehr, B. Frick, I. Grillo, P. Falus, M. Müller, B. Stühn, Phys. Rev. E 79 (2009) 31404.10.1103/PhysRevE.79.031404Suche in Google Scholar PubMed

38. M. Domschke, M. Kraska, R. Feile, B. Stühn, Soft Matter 9 (2013) 11503.10.1039/c3sm51632fSuche in Google Scholar

39. T. Spehr, B. Frick, M. Zamponi, B. Stühn, Soft Matter 7 (2011) 5745.10.1039/c1sm05204gSuche in Google Scholar

40. M. Lannert, A. Müller, E. Gouirand, V. Talluto, M. Rosenstihl, T. Walther, B. Stühn, T. Blochowicz, M. Vogel, J. Chem. Phys. 145 (2016) 234511.10.1063/1.4972009Suche in Google Scholar PubMed

41. M. Engel, T. Spehr, B. Stühn, in: R. Schäfer, P. Schmidt (Eds.), Methods in Physical Chemistry, Volume 1, Chapter 9, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2012), P. 297.10.1002/9783527636839.ch9Suche in Google Scholar

42. R.-J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science, Oxford University Press, Oxford, England, UK (2000).Suche in Google Scholar

43. P. Lindner, Th. Zemb (Eds.), Neutron, X-Rays and Light: Scattering Methods Applied to Soft Condensed Matter, North Holland (2002).Suche in Google Scholar

44. M. Kotlarchyk, S. Chen, J. S. Huang, M. W. Kim, Phys. Rev. A 29 (1984) 2054.10.1103/PhysRevA.29.2054Suche in Google Scholar

45. T. Blochowicz, C. Gögelein, T. Spehr, M. Müller, B. Stühn, Phys. Rev. E 76 (2007) 41505.10.1103/PhysRevE.76.041505Suche in Google Scholar PubMed

46. N. W. Ashcroft, J. Lekner, Phys. Rev. 145 (1966) 83.10.1103/PhysRev.145.83Suche in Google Scholar

47. M. Kraska, M. Gallei, B. Stühn, M. Rehahn, Langmuir 29 (2013) 8284.10.1021/la4007636Suche in Google Scholar PubMed

48. M. Nagao, H. Seto, M. O. Shibayama, N. L. Yamada, J. Appl. Cryst. 36 (2003) 602.10.1107/S0021889803006174Suche in Google Scholar

49. A. Maitra, J.Phys. Chem. 88 (1984) 5122.10.1021/j150665a064Suche in Google Scholar

50. S.-H. Chen, S.-L. Chang, R. Strey, J. Chem. Phys. 93 (1990) 1907.10.1063/1.459068Suche in Google Scholar

51. E. Y. Sheu, S. Chen, J. S. Huang, J. C. Sung, Phys. Rev. A 39 (1989) 5867.10.1103/PhysRevA.39.5867Suche in Google Scholar PubMed

52. B. Kuttich, A. Grefe, B. Stühn, Soft Matter 12 (2016) 6400.10.1039/C6SM01253ASuche in Google Scholar PubMed

53. M. Maugey, A.-M. Bellocq, Langmuir 15 (1999) 8602.10.1021/la990438gSuche in Google Scholar

54. D. Schubel, O. D. Bedford, G. Ilgenfritz, J. Eastoe, R. K. Heenan, Phys. Chem. Chem. Phys. 1 (1999) 2521.10.1039/a900685kSuche in Google Scholar

55. S. K. Mehta, S. Sharma, J. Colloid Interface Sci. 296 (2006) 690.10.1016/j.jcis.2005.09.035Suche in Google Scholar PubMed

56. B. Kuttich, P. Falus, I. Grillo, B. Stühn, J. Chem. Phys. 141 (2014) 084903.10.1063/1.4893955Suche in Google Scholar PubMed

57. A. Weber, B. Stühn, J. Chem. Phys. 144 (2016) 144903.10.1063/1.4945610Suche in Google Scholar PubMed

58. P. G. De Gennes, J. Phys. Chem. 94 (1990) 8407.10.1021/j100385a010Suche in Google Scholar

59. J. Lal, L. Auvray, J. Phys. II France 4 (1994) 2119.10.1051/jp2:1994250Suche in Google Scholar

60. W. Meier, Langmuir 12 (1996) 1188.10.1021/la950818bSuche in Google Scholar

61. M. Zulauf, H. Eicke, J. Phys. Chem. 83 (1979) 480.10.1021/j100467a011Suche in Google Scholar

62. M. Schwab, B. Stühn, J. Chem. Phys. 112 (2000) 6461.10.1063/1.481207Suche in Google Scholar

63. H. Eicke, M. Borkovec, B. Das-gupta, J. Phys. Chem. 93 (1989) 314.10.1021/j100338a062Suche in Google Scholar

64. R. Wipf, S. Jaksch, B. Stühn, Colloid Polym. Sci. 288 (2010) 589.10.1007/s00396-010-2199-5Suche in Google Scholar

65. S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes, Addison-Wesley Pub., Boston, MA, USA (1994).Suche in Google Scholar

66. M. Appel, T. Spehr, R. Wipf, B. Stühn, J. Colloid Interface Sci. 376 (2012) 140.10.1016/j.jcis.2012.02.062Suche in Google Scholar PubMed

67. J. S. Huang, S. T. Milner, B. Farago, D. Richter, Phys. Rev. Lett. 59 (1987) 2600.10.1103/PhysRevLett.59.2600Suche in Google Scholar PubMed

68. S. T. Milner, S. A. Safran, Phys. Rev. A 36 (1987) 4371.10.1103/PhysRevA.36.4371Suche in Google Scholar

69. S. Komura, K. Seki, Physica A 192 (1993) 27.10.1016/0378-4371(93)90142-QSuche in Google Scholar

70. Y. Kawabata, M. Nagao, H. Seto, S. Komura, T. Takeda, D. Schwahn, Appl. Phys. A 74 (2002) 534.10.1007/s003390201781Suche in Google Scholar

71. J. H. Dymond, H. A. Øye, J. Phys. Chem. Ref. Data. 23 (1994) 41.10.1063/1.555943Suche in Google Scholar

72. K. R. Harris, L. A. Woolf, J. Chem. Eng. Data 49 (2004) 1064.10.1021/je049918mSuche in Google Scholar

73. U. R. Dahal, E. E. Dormidontova, Phys. Rev. Lett. 117 (2016) 027801.10.1103/PhysRevLett.117.027801Suche in Google Scholar PubMed

74. P. B. Price, R. M. Walker, J. Appl. Phys. 33 (1962) 3407.10.1063/1.1702421Suche in Google Scholar

75. G. Pépy, P. Boesecke, A. Kuklin, E. Manceau, B. Schiedt, Z. Siwy, M. Toulemonde, C. Trautmann, J. Appl. Crystallogr. 40 (2007) 388.10.1107/S0021889807000088Suche in Google Scholar

76. P. Fratzl, G. Vogl, S. Klaumünzer, J. Appl. Crystallogr. 24 (1991) 588.10.1107/S0021889890012225Suche in Google Scholar

77. M. Kim, C. J. Glinka, Microporous Mesoporous Mater. 91 (2006) 305.10.1016/j.micromeso.2005.12.010Suche in Google Scholar

78. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 279 (1998) 548.10.1126/science.279.5350.548Suche in Google Scholar PubMed

79. W. Ruland, B. Smarsly, J. Appl. Crystallogr. 38 (2005) 78.10.1107/S0021889804027724Suche in Google Scholar

80. J. J. Schneider, J. Engstler, K. P. Budna, C. Teichert, S. Franzka, Eur. J. Inorg. Chem. 2005 (2005) 2352.10.1002/ejic.200401046Suche in Google Scholar

81. R. L. Fleisher, P. B. Price, R. M. Walker, Nuclear Tracks in Solids: Principles and Applications, University of California Press, Berkeley, CA, USA (1975).10.1525/9780520320239Suche in Google Scholar

82. C. Trautmann, Micro- and Nanoengineering with Ion Tracks, Springer, Berlin, Germany (2009).10.1007/978-3-642-00623-4_30Suche in Google Scholar

83. M. E. Toimil-Molares, Beilstein J. Nanotechnol. 3 (2012) 860.10.3762/bjnano.3.97Suche in Google Scholar PubMed PubMed Central

84. E. Ferain, R. Legras, Methods Phys. Res., Sect. B 84 (1994) 331.10.1016/0168-583X(94)95725-8Suche in Google Scholar

85. P. Yu. Apel, I. V. Blonskaya, S. N. Dmitriev, O. L. Orelovitch, A. Presz, B. A. Sartowska, Nanotechnology 18 (2007) 305302.10.1088/0957-4484/18/30/305302Suche in Google Scholar

86. T. W. Cornelius, B. Schiedt, D. Severin, G. Pépy, M. Toulemonde, P. Yu. Apel, P. Boesecke, C. Trautmann, Nanotechnology 21 (2010) 155702.10.1088/0957-4484/21/15/155702Suche in Google Scholar PubMed

87. N. Sobel, C. Hess, M. Lukas, A. Spende, B. Stühn, M.E. Toimil-Molares, C. Trautmann, Beilstein J. Nanotechnol. 6 (2015) 472.10.3762/bjnano.6.48Suche in Google Scholar PubMed PubMed Central

88. A. Spende, N. Sobel, M. Lukas, R. Zierold, J. C. Riedl, L. Gura, I. Schubert, J. M. M. Moreno, K. Nielsch, B. Stühn, C. Hess, C. Trautmann, M. E. Toimil-Molares, Nanotechnology 26 (2015) 335301.10.1088/0957-4484/26/33/335301Suche in Google Scholar PubMed

89. A. Shafir, D. Andelman, Soft Matter 3 (2007) 644.10.1039/b612808dSuche in Google Scholar PubMed

90. B. Kuttich, I. Grillo, S. Schöttner, M. Gallei, B. Stühn, Soft Matter 13 (2017) 6709.10.1039/C7SM01179BSuche in Google Scholar PubMed


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-1018).


Received: 2017-08-09
Accepted: 2017-11-17
Published Online: 2017-12-08
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2017-1018/html
Button zum nach oben scrollen