Abstract
Polyethylene glycol is water soluble and forms an eutectic system with water. The eutectic temperature is −19 °C for M=1500 g mol−1 and increases with molecular weight. The dielectric relaxation spectrum of the mixtures exhibits a strong loss maximum in ϵ″ (ω) similar to pure water. Relaxation time increases with the addition of PEG. Activation energies exhibit a maximum of 0.35 eV at molar fraction χp≈0.2. This compares well with results on ethanol water mixtures. Adding PEG molecules to nanoscopic water droplets of inverse microemulsions has only small impact on the bending modulus κ of a non-ionic microemulsion. In AOT based microemulsions an increase or decrease of κ is found in dependence on the size of the droplets. This is in accordance with the variation of the dynamic percolation transition in the same systems.
Acknowledgement
Financial support by the “Deutsche Forschungsgemeinschaft” DFG through the “DFG-Forschergruppe 1583” by Project no. STU191/6-1 is thankfully acknowledged. For the performance of neutron scattering measurements we are very grateful to Oxana Ivanova and the Jülich Centre of Neutron Research (JCNS) at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany as well as Isabelle Grillo and Peter Falus and the Institut Laue-Langevin, Grenoble, France.
References
1. W. Sparreboom, A. van den Berg, J. C. T. Eijkel, New J. Phys. 12 (2010) 015004.10.1088/1367-2630/12/1/015004Suche in Google Scholar
2. M. Y. Lin, S. K. Sinha, J. M. Drake, X.-L. Wu, P. Thiyagarajan, H. B. Stanley, Phys. Rev. Lett. 72 (1994) 2207.10.1103/PhysRevLett.72.2207Suche in Google Scholar PubMed
3. C. L. Jackson, G. B. McKenna, Chem. Mater. 8 (1996) 2128.10.1021/cm9601188Suche in Google Scholar
4. K. Binder, J. Non-Equilib. Thermodyn. 23 (1998) 1.10.1515/jnet.1998.23.1.1Suche in Google Scholar
5. W. F. Marshall, A. Straight, J. F. Marko, J. Swedlow, A. Dernburg, A. Belmont, A. W. Murray, D. A. Agard, J. W. Sedat, Curr. Biol. 7 (1997) 930.10.1016/S0960-9822(06)00412-XSuche in Google Scholar PubMed
6. M. S. Cheung, D. Klimov, D. Thirumalai, Proc. Natl. Acad. Sci. USA 102 (2005) 4753.10.1073/pnas.0409630102Suche in Google Scholar
7. H.-X. Zhou, G. Rivas, A. P. Minton, Annu. Rev. Biophys. 37 (2008) 375.10.1146/annurev.biophys.37.032807.125817Suche in Google Scholar PubMed
8. W. Reisner, J. N. Pedersen, R. H. Austin, Rep. Prog. Phys. 75 (2012) 106601.10.1088/0034-4885/75/10/106601Suche in Google Scholar PubMed
9. L. Zhu, B. R. Mimnaugh, Q. Ge, R. P. Quirk, S. Z. D. Cheng, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu, Polymer 42 (2001) 9121.10.1016/S0032-3861(01)00394-9Suche in Google Scholar
10. P. Chi, Z. Wang, B. Li, A.-C. Shi, Langmuir 27 (2011) 11683.10.1021/la202448cSuche in Google Scholar PubMed
11. B. Kuttich, O. Ivanova, I. Grillo, B. Stühn, J. Chem. Phys. 145 (2016) 164904.10.1063/1.4966155Suche in Google Scholar PubMed
12. A. Luzar, D. Chandler, J. Chem. Phys. 98 (1993) 8160.10.1063/1.464521Suche in Google Scholar
13. T. Takamuku, M. Tabata, A. Yamaguchi, J. Nishimoto, M. Kumamoto, H. Wakita, T. Yamaguchi, J. Phys. Chem. B 102 (1998) 8880.10.1021/jp9824297Suche in Google Scholar
14. D. Sauer, B. Schuster, M. Rosenstihl, S. Schneider, V. Talluto, T. Walther, T. Blochowicz, B. Stühn, M. Vogel, J. Chem. Phys. 140 (2014) 114503.10.1063/1.4868003Suche in Google Scholar PubMed
15. R. Schmitz, N. Müller, S. Ullmann, M. Vogel, J. Chem. Phys. 145 (2016) 104703.10.1063/1.4962240Suche in Google Scholar PubMed
16. P. Petong, R. Pottel, U. Kaatze, J. Phys. Chem. 104 (2000) 7420.10.1021/jp001393rSuche in Google Scholar
17. S. Yu. Noskov, G. Lamoureux, B. Roux, J. Phys. Chem. B 109 (2005) 6705.10.1021/jp045438qSuche in Google Scholar PubMed
18. K. Elamin, J. Sjöström, H. Jansson, J. Swenson, J. Chem. Phys. 136 (2012) 104508.10.1063/1.3692609Suche in Google Scholar PubMed
19. M. A. Van Dijk, J. G. H. Joosten, Y. K. Levine, D. Bedeaux, J.Phys. Chem. 93 (1989) 2506.10.1021/j100343a054Suche in Google Scholar
20. M. Kotlarchyk, S. Chen, J. S. Huang, J. Phys. Chem. 86 (1982) 3273.10.1021/j100214a001Suche in Google Scholar
21. B. Farago, D. Richter, J. Huang, S. Safran, S. Milner, Phys. Rev. Lett. 65 (1990) 3348.10.1103/PhysRevLett.65.3348Suche in Google Scholar PubMed
22. A. Adla, H. Fuess, C. Trautmann, J. Polym. Sci. B Polym. Phys. 41 (2003) 2892.10.1002/polb.10614Suche in Google Scholar
23. M. Engel, B. Stühn, J. J. Schneider, T. Cornelius, M. Naumann, Appl. Phys. A 97 (2009) 99.10.1007/s00339-009-5346-4Suche in Google Scholar
24. M. Engel, B. Stühn, J. Chem. Phys. 132 (2010) 224502.10.1063/1.3429312Suche in Google Scholar PubMed
25. C. D. Dewhurst, Meas. Sci. Technol. 19 (2008) 034007.10.1088/0957-0233/19/3/034007Suche in Google Scholar
26. L. Huang, K, J. Polym. Sci. B Polym. Phys. 39 (2001) 496.10.1002/1099-0488(20010301)39:5<496::AID-POLB1023>3.0.CO;2-HSuche in Google Scholar
27. P. Smith, A. J. Pennings, Polymer 15 (1974) 413.10.1016/0032-3861(74)90103-7Suche in Google Scholar
28. T. Sato, H. Niwa, A. Chiba, R. Nozaki, J. Chem. Phys. 108 (1998) 4138.10.1063/1.475812Suche in Google Scholar
29. R. Buchner, J. Barthel, J. Stauber, Chem. Phys. Lett. 306 (1999) 57.10.1016/S0009-2614(99)00455-8Suche in Google Scholar
30. U. Kaatze, J. Solution Chem. 26 (1997) 1049.10.1007/BF02768829Suche in Google Scholar
31. E. Hanke, U. Schulz, U. Kaatze, ChemPhysChem 8 (2007) 553.10.1002/cphc.200600601Suche in Google Scholar PubMed
32. J. A. Forrest, K. Dalnoki-Veress, J. R. Dutcher, Phys. Rev. E, 56 (1997) 5705.10.1103/PhysRevE.56.5705Suche in Google Scholar
33. M. Alcoutlabi, G. B. McKenna, J. Phys. Condens. Matter 17 (2005) R461.10.1088/0953-8984/17/15/R01Suche in Google Scholar
34. S. Napolitano, E. Glynos, N. B. Tito, Rep. Prog. Phys. 80 (2017) 036602.10.1088/1361-6633/aa5284Suche in Google Scholar PubMed
35. M. Kraska, B. Kuttich, B. Stühn, in: S. C. Müller, J. Parisi (Eds.), Bottom-Up Self-Organization in Supramolecular Soft Matter Principles, Volume 217 of Springer Series in Materials Science, Springer International Publishing, Cham, Switzerland (2015).Suche in Google Scholar
36. T. Spehr, B. Frick, I. Grillo, B. Stühn, J. Phys. Condens. Matter 20 (2008) 104204.10.1088/0953-8984/20/10/104204Suche in Google Scholar
37. T. Spehr, B. Frick, I. Grillo, P. Falus, M. Müller, B. Stühn, Phys. Rev. E 79 (2009) 31404.10.1103/PhysRevE.79.031404Suche in Google Scholar PubMed
38. M. Domschke, M. Kraska, R. Feile, B. Stühn, Soft Matter 9 (2013) 11503.10.1039/c3sm51632fSuche in Google Scholar
39. T. Spehr, B. Frick, M. Zamponi, B. Stühn, Soft Matter 7 (2011) 5745.10.1039/c1sm05204gSuche in Google Scholar
40. M. Lannert, A. Müller, E. Gouirand, V. Talluto, M. Rosenstihl, T. Walther, B. Stühn, T. Blochowicz, M. Vogel, J. Chem. Phys. 145 (2016) 234511.10.1063/1.4972009Suche in Google Scholar PubMed
41. M. Engel, T. Spehr, B. Stühn, in: R. Schäfer, P. Schmidt (Eds.), Methods in Physical Chemistry, Volume 1, Chapter 9, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2012), P. 297.10.1002/9783527636839.ch9Suche in Google Scholar
42. R.-J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science, Oxford University Press, Oxford, England, UK (2000).Suche in Google Scholar
43. P. Lindner, Th. Zemb (Eds.), Neutron, X-Rays and Light: Scattering Methods Applied to Soft Condensed Matter, North Holland (2002).Suche in Google Scholar
44. M. Kotlarchyk, S. Chen, J. S. Huang, M. W. Kim, Phys. Rev. A 29 (1984) 2054.10.1103/PhysRevA.29.2054Suche in Google Scholar
45. T. Blochowicz, C. Gögelein, T. Spehr, M. Müller, B. Stühn, Phys. Rev. E 76 (2007) 41505.10.1103/PhysRevE.76.041505Suche in Google Scholar PubMed
46. N. W. Ashcroft, J. Lekner, Phys. Rev. 145 (1966) 83.10.1103/PhysRev.145.83Suche in Google Scholar
47. M. Kraska, M. Gallei, B. Stühn, M. Rehahn, Langmuir 29 (2013) 8284.10.1021/la4007636Suche in Google Scholar PubMed
48. M. Nagao, H. Seto, M. O. Shibayama, N. L. Yamada, J. Appl. Cryst. 36 (2003) 602.10.1107/S0021889803006174Suche in Google Scholar
49. A. Maitra, J.Phys. Chem. 88 (1984) 5122.10.1021/j150665a064Suche in Google Scholar
50. S.-H. Chen, S.-L. Chang, R. Strey, J. Chem. Phys. 93 (1990) 1907.10.1063/1.459068Suche in Google Scholar
51. E. Y. Sheu, S. Chen, J. S. Huang, J. C. Sung, Phys. Rev. A 39 (1989) 5867.10.1103/PhysRevA.39.5867Suche in Google Scholar PubMed
52. B. Kuttich, A. Grefe, B. Stühn, Soft Matter 12 (2016) 6400.10.1039/C6SM01253ASuche in Google Scholar PubMed
53. M. Maugey, A.-M. Bellocq, Langmuir 15 (1999) 8602.10.1021/la990438gSuche in Google Scholar
54. D. Schubel, O. D. Bedford, G. Ilgenfritz, J. Eastoe, R. K. Heenan, Phys. Chem. Chem. Phys. 1 (1999) 2521.10.1039/a900685kSuche in Google Scholar
55. S. K. Mehta, S. Sharma, J. Colloid Interface Sci. 296 (2006) 690.10.1016/j.jcis.2005.09.035Suche in Google Scholar PubMed
56. B. Kuttich, P. Falus, I. Grillo, B. Stühn, J. Chem. Phys. 141 (2014) 084903.10.1063/1.4893955Suche in Google Scholar PubMed
57. A. Weber, B. Stühn, J. Chem. Phys. 144 (2016) 144903.10.1063/1.4945610Suche in Google Scholar PubMed
58. P. G. De Gennes, J. Phys. Chem. 94 (1990) 8407.10.1021/j100385a010Suche in Google Scholar
59. J. Lal, L. Auvray, J. Phys. II France 4 (1994) 2119.10.1051/jp2:1994250Suche in Google Scholar
60. W. Meier, Langmuir 12 (1996) 1188.10.1021/la950818bSuche in Google Scholar
61. M. Zulauf, H. Eicke, J. Phys. Chem. 83 (1979) 480.10.1021/j100467a011Suche in Google Scholar
62. M. Schwab, B. Stühn, J. Chem. Phys. 112 (2000) 6461.10.1063/1.481207Suche in Google Scholar
63. H. Eicke, M. Borkovec, B. Das-gupta, J. Phys. Chem. 93 (1989) 314.10.1021/j100338a062Suche in Google Scholar
64. R. Wipf, S. Jaksch, B. Stühn, Colloid Polym. Sci. 288 (2010) 589.10.1007/s00396-010-2199-5Suche in Google Scholar
65. S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes, Addison-Wesley Pub., Boston, MA, USA (1994).Suche in Google Scholar
66. M. Appel, T. Spehr, R. Wipf, B. Stühn, J. Colloid Interface Sci. 376 (2012) 140.10.1016/j.jcis.2012.02.062Suche in Google Scholar PubMed
67. J. S. Huang, S. T. Milner, B. Farago, D. Richter, Phys. Rev. Lett. 59 (1987) 2600.10.1103/PhysRevLett.59.2600Suche in Google Scholar PubMed
68. S. T. Milner, S. A. Safran, Phys. Rev. A 36 (1987) 4371.10.1103/PhysRevA.36.4371Suche in Google Scholar
69. S. Komura, K. Seki, Physica A 192 (1993) 27.10.1016/0378-4371(93)90142-QSuche in Google Scholar
70. Y. Kawabata, M. Nagao, H. Seto, S. Komura, T. Takeda, D. Schwahn, Appl. Phys. A 74 (2002) 534.10.1007/s003390201781Suche in Google Scholar
71. J. H. Dymond, H. A. Øye, J. Phys. Chem. Ref. Data. 23 (1994) 41.10.1063/1.555943Suche in Google Scholar
72. K. R. Harris, L. A. Woolf, J. Chem. Eng. Data 49 (2004) 1064.10.1021/je049918mSuche in Google Scholar
73. U. R. Dahal, E. E. Dormidontova, Phys. Rev. Lett. 117 (2016) 027801.10.1103/PhysRevLett.117.027801Suche in Google Scholar PubMed
74. P. B. Price, R. M. Walker, J. Appl. Phys. 33 (1962) 3407.10.1063/1.1702421Suche in Google Scholar
75. G. Pépy, P. Boesecke, A. Kuklin, E. Manceau, B. Schiedt, Z. Siwy, M. Toulemonde, C. Trautmann, J. Appl. Crystallogr. 40 (2007) 388.10.1107/S0021889807000088Suche in Google Scholar
76. P. Fratzl, G. Vogl, S. Klaumünzer, J. Appl. Crystallogr. 24 (1991) 588.10.1107/S0021889890012225Suche in Google Scholar
77. M. Kim, C. J. Glinka, Microporous Mesoporous Mater. 91 (2006) 305.10.1016/j.micromeso.2005.12.010Suche in Google Scholar
78. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 279 (1998) 548.10.1126/science.279.5350.548Suche in Google Scholar PubMed
79. W. Ruland, B. Smarsly, J. Appl. Crystallogr. 38 (2005) 78.10.1107/S0021889804027724Suche in Google Scholar
80. J. J. Schneider, J. Engstler, K. P. Budna, C. Teichert, S. Franzka, Eur. J. Inorg. Chem. 2005 (2005) 2352.10.1002/ejic.200401046Suche in Google Scholar
81. R. L. Fleisher, P. B. Price, R. M. Walker, Nuclear Tracks in Solids: Principles and Applications, University of California Press, Berkeley, CA, USA (1975).10.1525/9780520320239Suche in Google Scholar
82. C. Trautmann, Micro- and Nanoengineering with Ion Tracks, Springer, Berlin, Germany (2009).10.1007/978-3-642-00623-4_30Suche in Google Scholar
83. M. E. Toimil-Molares, Beilstein J. Nanotechnol. 3 (2012) 860.10.3762/bjnano.3.97Suche in Google Scholar PubMed PubMed Central
84. E. Ferain, R. Legras, Methods Phys. Res., Sect. B 84 (1994) 331.10.1016/0168-583X(94)95725-8Suche in Google Scholar
85. P. Yu. Apel, I. V. Blonskaya, S. N. Dmitriev, O. L. Orelovitch, A. Presz, B. A. Sartowska, Nanotechnology 18 (2007) 305302.10.1088/0957-4484/18/30/305302Suche in Google Scholar
86. T. W. Cornelius, B. Schiedt, D. Severin, G. Pépy, M. Toulemonde, P. Yu. Apel, P. Boesecke, C. Trautmann, Nanotechnology 21 (2010) 155702.10.1088/0957-4484/21/15/155702Suche in Google Scholar PubMed
87. N. Sobel, C. Hess, M. Lukas, A. Spende, B. Stühn, M.E. Toimil-Molares, C. Trautmann, Beilstein J. Nanotechnol. 6 (2015) 472.10.3762/bjnano.6.48Suche in Google Scholar PubMed PubMed Central
88. A. Spende, N. Sobel, M. Lukas, R. Zierold, J. C. Riedl, L. Gura, I. Schubert, J. M. M. Moreno, K. Nielsch, B. Stühn, C. Hess, C. Trautmann, M. E. Toimil-Molares, Nanotechnology 26 (2015) 335301.10.1088/0957-4484/26/33/335301Suche in Google Scholar PubMed
89. A. Shafir, D. Andelman, Soft Matter 3 (2007) 644.10.1039/b612808dSuche in Google Scholar PubMed
90. B. Kuttich, I. Grillo, S. Schöttner, M. Gallei, B. Stühn, Soft Matter 13 (2017) 6709.10.1039/C7SM01179BSuche in Google Scholar PubMed
Supplementary Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-1018).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data
Artikel in diesem Heft
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data