Startseite Naturwissenschaften 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica

  • Max Weigler , Martin Brodrecht , Hergen Breitzke , Felix Dietrich , Matthias Sattig , Gerd Buntkowsky EMAIL logo und Michael Vogel EMAIL logo
Veröffentlicht/Copyright: 5. Januar 2018

Abstract

Mesoporous silica MCM-41 is prepared, for which the inner surfaces are modified by 3-(aminopropyl)triethoxysilane (APTES) in a controlled manner. Nitrogen gas adsorpition yields a pore diameter of 2.2 nm for the APTES functionalized MCM-41. 2H nuclear magnetic resonance (NMR) and broadband dielectric spectroscopy (BDS) provide detailed and consistent insights into the temperature-dependent reorientation dynamics of water in this confinement. We find that a liquid water species becomes accompanied by a solid water species when cooling through ~210 K, as indicated by an onset of bimodal 2H spin-lattice relaxation. The reorientation of the liquid water species is governed by pronounced dynamical heterogeneity in the whole temperature range. Its temperature dependence shows a mild dynamic crossover when the solid water species emerges and, hence, the volume accessible to the liquid water species further shrinks. Therefore, we attribute this variation in the temperature dependence to a change from bulk-like behavior towards interface-dominated dynamics. Below this dynamic crossover, 2H line-shape and stimulted-echo studies show that water reorientation becomes anisotropic upon cooling, suggesting that these NMR approaches, but also BDS measurements do no longer probe the structural (α) relaxation, but rather a secondary (β) relaxation of water at sufficiently low temperatures. Then, another dynamic crossover at ~180 K can be rationalized in terms of a change of the temperature dependence of the β relaxation in response to a glassy freezing of the α relaxation of confined water. Comparing these results for APTES modied MCM-41 with previous findings for mesoporous silica with various pore diameters, we obtain valuable information about the dependence of water dynamics in restricted geometries on the size of the nanoscopic confinements and the properties of the inner surfaces.

Acknowledgement

Financial support of the Deutsche Forschungsgemeinschaft (DFG) in the framework of Forschergruppe FOR 1583 through grants Bu-911/18-1/2 and Vo-905/8-1/2 is gratefully acknowledged.

References

1. M. Alcoutlabi, G. B. McKenna, J. Phys.: Condens. Matter 17 (2005) R461.10.1088/0953-8984/17/15/R01Suche in Google Scholar

2. R. Richert, Annu. Rev. Phys. Chem. 62 (2011) 65.10.1146/annurev-physchem-032210-103343Suche in Google Scholar PubMed

3. M. Vogel, Eur. Phys. J. Special Topics 189 (2010) 47.10.1140/epjst/e2010-01309-9Suche in Google Scholar

4. S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 116 (2016) 7608.10.1021/acs.chemrev.5b00609Suche in Google Scholar PubMed

5. S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, T. Yamaguchi, Phys. Chem. Chem. Phy. 8 (2006) 3223.10.1039/b518365kSuche in Google Scholar PubMed

6. S. Jähnert, F. V. Chavez, G. E. Schaumann, A. Schreiber, M. Schönhoff, G. H. Findenegg, Phys. Chem. Chem. Phys. 10 (2008) 6039.10.1039/b809438cSuche in Google Scholar PubMed

7. J. Deschamps, F. Audonnet, N. Brodie-Linder, M. Schoeffel, C. Alba-Simionesco, Phys. Chem. Chem. Phys. 12 (2010) 1440.10.1039/B920816JSuche in Google Scholar PubMed

8. P. Ball, Chem. Rev. 108 (2008) 74.10.1021/cr068037aSuche in Google Scholar PubMed

9. L. Liu, S.-H. Chen, A. Faraone, C.-W. Yen, C.-Y. Mou, Phys. Rev. Lett. 95 (2005) 117802.10.1103/PhysRevLett.95.117802Suche in Google Scholar PubMed

10. P. H. Poole, F. Sciortino, U. Essmann, H. E. Stanley, Nature 360 (1992) 324.10.1038/360324a0Suche in Google Scholar

11. J. Swenson, H. Jansson, R. Bergman, Phys. Rev. Lett. 96 (2006) 247802.10.1103/PhysRevLett.96.247802Suche in Google Scholar PubMed

12. J. Swenson, S. Cerveny, J. Phys.: Condens. Matter 27 (2015) 033102.10.1088/0953-8984/27/3/033102Suche in Google Scholar PubMed

13. M. Sattig, M. Vogel, J. Phys. Chem. Lett. 5 (2014) 174.10.1021/jz402539rSuche in Google Scholar PubMed

14. M. Sattig, S. Reutter, F. Fujara, M. Werner, G. Buntkowsky, M. Vogel, Phys. Chem. Chem. Phys. 16 (2014) 19229.10.1039/C4CP02057JSuche in Google Scholar PubMed

15. M. Rosenstihl, K. Kämpf, F. Klameth, M. Sattig, M. Vogel, J. Non-Cryst. Solids 407 (2015) 449.10.1016/j.jnoncrysol.2014.08.040Suche in Google Scholar

16. J. Sjöström, J. Swenson, R. Bergman, S. Kittaka, J. Chem. Phys. 128 (2008) 154503.10.1063/1.2902283Suche in Google Scholar PubMed

17. K. Schmidt-Rohr, H. W. Spiess, Multidimensional Solid-State NMR and Polymers, Academic Press, London (1994).Suche in Google Scholar

18. N. Bloembergen, E. M. Purcell, R. V. Pound, Phys. Rev. 730 (1948) 679.10.1103/PhysRev.73.679Suche in Google Scholar

19. P. A. Beckmann, Phys. Rep. 171 (1988) 85.10.1016/0370-1573(88)90073-7Suche in Google Scholar

20. R. Böhmer, G. Diezemann, G. Hinze, E. Rössler, Prog. Nucl. Magn. Reson. Spectrosc. 39 (2001) 191.10.1016/S0079-6565(01)00036-XSuche in Google Scholar

21. G. Fleischer, F. Fujara, NMR, Basic Principles and Progress, volume 30 of NMR, Springer Berlin Heidelberg, 1 edition (1994), P. 159.10.1007/978-3-642-78483-5_4Suche in Google Scholar

22. D. Demuth, M. Sattig, E. Steinücken, M. Weigler, M. Vogel, Z. Phys. Chem. 232 (2018) 1059.10.1515/zpch-2017-1027Suche in Google Scholar

23. B. Grünberg, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H.-H. Limbach, G. Buntkowsky, Chem. – Eur. J. 10 (2004) 5689.10.1002/chem.200400351Suche in Google Scholar PubMed

24. A. Adamczyk, Y. Xu, B. Walaszek, F. Roelofs, T. Pery, K. Pelzer, K. Philippot, B. Chaudret, H.-H. Limbach, H. Breitzke, G. Buntkowsky, Chem. Eur. J. 10 (2004) 5689.10.1002/chem.200400351Suche in Google Scholar

25. M. Brodrecht, E. Klotz, C. Lederle, H. Breitzke, B. Stühn, M. Vogel, G. Buntkowsky, Z. Phys. Chem. 232 (2018) 1003.10.1515/zpch-2017-1030Suche in Google Scholar

26. D. Schaefer, J. Leisen, H. W. Spiess, J. Magn. Reson. A 115 (1995) 60.10.1006/jmra.1995.1149Suche in Google Scholar

27. M. Vogel, Phys. Rev. Lett. 101 (2008) 225701.10.1103/PhysRevLett.101.225701Suche in Google Scholar PubMed

28. S. A. Lusceac, M. R. Vogel, C. R. Herbers, BBA-Proteins Proteom. 1804 (2010) 41.10.1016/j.bbapap.2009.06.009Suche in Google Scholar PubMed

29. S. A. Lusceac, M. Vogel, J. Phys. Chem. B 114 (2010) 10209.10.1021/jp103663tSuche in Google Scholar PubMed

30. M. Sattig, K. Elamin, M. Reuhl, J. Swenson, M. Vogel, J. Phys. Chem. C 121 (2017) 6796.10.1021/acs.jpcc.7b00655Suche in Google Scholar

31. W. Schnauss, F. Fujara, H. Sillescu, J. Chem Phys. 970 (1992) 1378.10.1063/1.463264Suche in Google Scholar

32. S. A. Lusceac, C. Koplin, P. Medick, M. Vogel, N. Brodie-Linder, C. LeQuellec, C. Alba-Simionesco, E. A. Rössler, J. Phys. Chem. B 108 (2004) 16601.10.1021/jp040376pSuche in Google Scholar

33. K. L. Ngai, S. Capaccioli, A. Paciaroni, Chem. Phys. 424 (2013) 37.10.1016/j.chemphys.2013.05.018Suche in Google Scholar

34. N. Roussenova, M. A. Alam, S. Townrow, D. Kilburn, P. E. Sokol, R. Guillet-Nicolas, F. Kleitz, New J. Phys. 16 (2014) 103030.10.1088/1367-2630/16/10/103030Suche in Google Scholar

Received: 2017-09-14
Accepted: 2017-11-09
Published Online: 2018-01-05
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2017-1034/html
Button zum nach oben scrollen