Home Physical Sciences Monitoring the Process of Nanocavity Formation on a Monomolecular Level
Article
Licensed
Unlicensed Requires Authentication

Monitoring the Process of Nanocavity Formation on a Monomolecular Level

  • Philip Ruff , Christian Dietz , Robert W. Stark and Christian Hess EMAIL logo
Published/Copyright: May 28, 2018

Abstract

Controlling the synthesis of nanostructured surfaces is essential to tailor the properties of functional materials such as catalysts. We report on the synthesis of nanocavities of 1–2 nm dimension on planar Si-wafers by sacrificial nanotemplating and atomic layer deposition (ALD). It is shown that the process of nanocavity formation can be directly monitored on a monomolecular level through imaging with an atomic force microscope (AFM). In particular, by employing the AFM peak force tapping mode the simultaneous mapping of surface topography and tip-surface adhesion forces is accessible, which is useful for the assignment of topographical features and determining the orientation of the template molecules on the wafer surface. Detailed analysis based on the three-dimensional AFM topography allows for a quantification of the template and nanocavity surface coverage. The results are of importance for a detailed understanding of the processes underlying template-based nanocavity formation on oxide surfaces.

Acknowledgements

The authors would like to thank Karl Kopp for performing XPS experiments. Financial support by the Deutsche Forschungsgemeinschaft (DFG-FOR1583) is gratefully acknowledged.

References

1. C. Marichy, M. Bechelany, N. Pinna, Adv. Mater. 24 (2012) 1017.10.1002/adma.201104129Search in Google Scholar PubMed

2. B. J. O’Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, G. W. Huber, ACS Catal. 5 (2015) 1804.10.1021/cs501862hSearch in Google Scholar

3. N. Sobel, C. Hess, Angew. Chem. Int. Ed. Engl. 54 (2015) 15014.10.1002/anie.201503680Search in Google Scholar PubMed

4. Z. Gao, M. Dong, G. Wang, P. Sheng, Z. Wu, H. Yang, B. Zhang, G. Wang, J. Wang, Y. Qin, Angew. Chem. Int. Ed. Engl. 54 (2015) 9006.10.1002/anie.201503749Search in Google Scholar PubMed

5. J. Lu, J. W. Elam, P. C. Stair, Acc. Chem. Res. 46 (2013) 1806.10.1021/ar300229cSearch in Google Scholar PubMed

6. N. A. Ray, R. P. Van Duyne, P. C. Stair, J. Phys. Chem. C 116 (2012) 7748.10.1021/jp210688zSearch in Google Scholar

7. S. M. George, Chem. Rev. 110 (2010) 111.10.1021/cr900056bSearch in Google Scholar PubMed

8. P. Ruff, S. Lauterbach, H.-J. Kleebe, C. Hess, Microporous Mesoporous Mater. 235 (2016) 160.10.1016/j.micromeso.2016.08.005Search in Google Scholar

9. J. W. Elam, J. A. Libera, T. H. Huynh, H. Feng, M. J. Pellin, J. Phys. Chem. C 114 (2010) 17286.10.1021/jp1030587Search in Google Scholar

10. N. Sobel, C. Hess, M. Lukas, A. Spende, B. Stuhn, M. E. Toimil-Molares, C. Trautmann, Beilstein J. Nanotechnol. 6 (2015) 472.10.3762/bjnano.6.48Search in Google Scholar PubMed PubMed Central

11. A. Spende, N. Sobel, M. Lukas, R. Zierold, J. C. Riedl, L. Gura, I. Schubert, J. M. Moreno, K. Nielsch, B. Stuhn, C. Hess, C. Trautmann, M. E. Toimil-Molares, Nanotechnology 26 (2015) 335301.10.1088/0957-4484/26/33/335301Search in Google Scholar PubMed

12. C. P. Canlas, J. Lu, N. A. Ray, N. A. Grosso-Giordano, S. Lee, J. W. Elam, R. E. Winans, R. P. Van Duyne, P. C. Stair, J. M. Notestein, Nat. Chem. 4 (2012) 1030.10.1038/nchem.1477Search in Google Scholar PubMed

13. M. Fang, J. C. Ho, ACS Nano 9 (2015) 8651.10.1021/acsnano.5b05249Search in Google Scholar PubMed

14. M. Knez, K. Nielsch, L. Niinistö, Adv. Mater. 19 (2007) 3425.10.1002/adma.200700079Search in Google Scholar

15. J. Liu, Y. Mao, E. Lan, D. R. Banatao, G. J. Forse, J. Lu, H.-O. Blom, T. O. Yeates, B. Dunn, J. P. Chang, J. Am. Chem. Soc. 130 (2008) 16908.10.1021/ja803186eSearch in Google Scholar PubMed

16. S. Schiwek, L.-O. Heim, R. W. Stark, C. Dietz, J. Appl. Phys. 117 (2015) 104303.10.1063/1.4914354Search in Google Scholar

17. A. Voss, R. W. Stark, C. Dietz, Macromolecules 47 (2014) 5236.10.1021/ma500578eSearch in Google Scholar

18. H. J. Butt, M. Jaschke, Nanotechnology 6 (1995) 1.10.1088/0957-4484/6/1/001Search in Google Scholar

19. A. Rosa-Zeiser, E. Weilandt, S. Hild, O. Marti, Meas. Sci. Technol. 8 (1997) 1333.10.1088/0957-0233/8/11/020Search in Google Scholar

20. P. M. Spizig, Dynamische Rasterkraftmikroskopie, Faculty of Natural Sciences, University of Ulm (2002).Search in Google Scholar

21. P. J. de Pablo, J. Colchero, J. Gomez-Herrero, A. M. Baro, Appl. Phys. Lett. 73 (1998) 3300.10.1063/1.122751Search in Google Scholar

22. C. Hess, in Nanostructured Catalysts: Selective Oxidations (Eds.: C. Hess, R. Schlögl), RSC Nanoscience & Nanotechnology No. 19, Ch. 13, Cambridge (2011).10.1039/9781847559876Search in Google Scholar

23. J. M. Williams, T. Han, T. P. Beebe Jr., Langmuir 12 (1996) 1291.10.1021/la950500jSearch in Google Scholar


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-1055).


Received: 2017-10-17
Accepted: 2018-03-19
Published Online: 2018-05-28
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2017-1055/html
Scroll to top button