Abstract
Controlling the synthesis of nanostructured surfaces is essential to tailor the properties of functional materials such as catalysts. We report on the synthesis of nanocavities of 1–2 nm dimension on planar Si-wafers by sacrificial nanotemplating and atomic layer deposition (ALD). It is shown that the process of nanocavity formation can be directly monitored on a monomolecular level through imaging with an atomic force microscope (AFM). In particular, by employing the AFM peak force tapping mode the simultaneous mapping of surface topography and tip-surface adhesion forces is accessible, which is useful for the assignment of topographical features and determining the orientation of the template molecules on the wafer surface. Detailed analysis based on the three-dimensional AFM topography allows for a quantification of the template and nanocavity surface coverage. The results are of importance for a detailed understanding of the processes underlying template-based nanocavity formation on oxide surfaces.
Acknowledgements
The authors would like to thank Karl Kopp for performing XPS experiments. Financial support by the Deutsche Forschungsgemeinschaft (DFG-FOR1583) is gratefully acknowledged.
References
1. C. Marichy, M. Bechelany, N. Pinna, Adv. Mater. 24 (2012) 1017.10.1002/adma.201104129Search in Google Scholar PubMed
2. B. J. O’Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, G. W. Huber, ACS Catal. 5 (2015) 1804.10.1021/cs501862hSearch in Google Scholar
3. N. Sobel, C. Hess, Angew. Chem. Int. Ed. Engl. 54 (2015) 15014.10.1002/anie.201503680Search in Google Scholar PubMed
4. Z. Gao, M. Dong, G. Wang, P. Sheng, Z. Wu, H. Yang, B. Zhang, G. Wang, J. Wang, Y. Qin, Angew. Chem. Int. Ed. Engl. 54 (2015) 9006.10.1002/anie.201503749Search in Google Scholar PubMed
5. J. Lu, J. W. Elam, P. C. Stair, Acc. Chem. Res. 46 (2013) 1806.10.1021/ar300229cSearch in Google Scholar PubMed
6. N. A. Ray, R. P. Van Duyne, P. C. Stair, J. Phys. Chem. C 116 (2012) 7748.10.1021/jp210688zSearch in Google Scholar
7. S. M. George, Chem. Rev. 110 (2010) 111.10.1021/cr900056bSearch in Google Scholar PubMed
8. P. Ruff, S. Lauterbach, H.-J. Kleebe, C. Hess, Microporous Mesoporous Mater. 235 (2016) 160.10.1016/j.micromeso.2016.08.005Search in Google Scholar
9. J. W. Elam, J. A. Libera, T. H. Huynh, H. Feng, M. J. Pellin, J. Phys. Chem. C 114 (2010) 17286.10.1021/jp1030587Search in Google Scholar
10. N. Sobel, C. Hess, M. Lukas, A. Spende, B. Stuhn, M. E. Toimil-Molares, C. Trautmann, Beilstein J. Nanotechnol. 6 (2015) 472.10.3762/bjnano.6.48Search in Google Scholar PubMed PubMed Central
11. A. Spende, N. Sobel, M. Lukas, R. Zierold, J. C. Riedl, L. Gura, I. Schubert, J. M. Moreno, K. Nielsch, B. Stuhn, C. Hess, C. Trautmann, M. E. Toimil-Molares, Nanotechnology 26 (2015) 335301.10.1088/0957-4484/26/33/335301Search in Google Scholar PubMed
12. C. P. Canlas, J. Lu, N. A. Ray, N. A. Grosso-Giordano, S. Lee, J. W. Elam, R. E. Winans, R. P. Van Duyne, P. C. Stair, J. M. Notestein, Nat. Chem. 4 (2012) 1030.10.1038/nchem.1477Search in Google Scholar PubMed
13. M. Fang, J. C. Ho, ACS Nano 9 (2015) 8651.10.1021/acsnano.5b05249Search in Google Scholar PubMed
14. M. Knez, K. Nielsch, L. Niinistö, Adv. Mater. 19 (2007) 3425.10.1002/adma.200700079Search in Google Scholar
15. J. Liu, Y. Mao, E. Lan, D. R. Banatao, G. J. Forse, J. Lu, H.-O. Blom, T. O. Yeates, B. Dunn, J. P. Chang, J. Am. Chem. Soc. 130 (2008) 16908.10.1021/ja803186eSearch in Google Scholar PubMed
16. S. Schiwek, L.-O. Heim, R. W. Stark, C. Dietz, J. Appl. Phys. 117 (2015) 104303.10.1063/1.4914354Search in Google Scholar
17. A. Voss, R. W. Stark, C. Dietz, Macromolecules 47 (2014) 5236.10.1021/ma500578eSearch in Google Scholar
18. H. J. Butt, M. Jaschke, Nanotechnology 6 (1995) 1.10.1088/0957-4484/6/1/001Search in Google Scholar
19. A. Rosa-Zeiser, E. Weilandt, S. Hild, O. Marti, Meas. Sci. Technol. 8 (1997) 1333.10.1088/0957-0233/8/11/020Search in Google Scholar
20. P. M. Spizig, Dynamische Rasterkraftmikroskopie, Faculty of Natural Sciences, University of Ulm (2002).Search in Google Scholar
21. P. J. de Pablo, J. Colchero, J. Gomez-Herrero, A. M. Baro, Appl. Phys. Lett. 73 (1998) 3300.10.1063/1.122751Search in Google Scholar
22. C. Hess, in Nanostructured Catalysts: Selective Oxidations (Eds.: C. Hess, R. Schlögl), RSC Nanoscience & Nanotechnology No. 19, Ch. 13, Cambridge (2011).10.1039/9781847559876Search in Google Scholar
23. J. M. Williams, T. Han, T. P. Beebe Jr., Langmuir 12 (1996) 1291.10.1021/la950500jSearch in Google Scholar
Supplementary Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-1055).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data
Articles in the same Issue
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data