Startseite Naturwissenschaften Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals

  • Thomas Lohmiller , Mahesh A. Vibhute , Wolfgang Lubitz und Anton Savitsky EMAIL logo
Veröffentlicht/Copyright: 4. November 2016

Abstract

Halogen-bonded complexes with neutral nitroxide radicals as the Lewis base have been investigated in liquid and frozen solutions by multifrequency CW and pulse EPR spectroscopies, including ENDOR and ELDOR-detected NMR (EDNMR) techniques. The non-covalent interaction with iodopentafluorobenzene as halogen-bond donor is shown to affect a variety of EPR parameters of the stable nitroxide radicals. In liquid solution, only bulk effects on the EPR signal, i.e. isotropic g value, isotropic 14N hyperfine coupling and linewidth, are observed. Experiments on frozen solutions allow for a more in-depth dissection of complexing effects. W-band EPR spectra at cryogenic temperatures exhibit multiple signal components of different 14N hyperfine interactions and spectral widths. This demonstrates the coexistence of several halogen-bonded complexes that differ in donor-acceptor binding geometries. These complexes have different relaxation properties, which allow for their spectral discrimination. 19F ENDOR experiments prove the origin of these effects to be different specific intermolecular interactions rather than a consequence of changes in the solvation environment. The EPR spectra yet reveal a strong influence of solvent composition on the amount of the various complexes formed. The introduced methodology for the characterization of such adducts improves our understanding of halogen bonding and could be helpful in the development of tailor-made donors and complexes for specific applications.


Dedicated to: Kev Salikhov on the occasion of his 80th birthday.


Acknowledgement:

This work was supported by the Max-Planck-Gesellschaft and the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG).

References

1. P. Metrangolo, G. Resnati, (Eds.), Halogen Bonding: Fundamentals and Applications, Springer-Verlag, Berlin, Heidelberg (2008).10.1007/978-3-540-74330-9Suche in Google Scholar

2. P. Metrangolo, G. Resnati, Chem. – Eur. J. 7 (2001) 2511.10.1002/1521-3765(20010618)7:12<2511::AID-CHEM25110>3.0.CO;2-TSuche in Google Scholar

3. P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res. 38 (2005) 386.10.1021/ar0400995Suche in Google Scholar

4. P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem. Int. Ed. 47 (2008) 6114.10.1002/anie.200800128Suche in Google Scholar

5. M. Fourmigue, Curr. Opin. Solid State Mater. Sci. 13 (2009) 36.10.1016/j.cossms.2009.05.001Suche in Google Scholar

6. A. C. Legon, Phys. Chem. Chem. Phys. 12 (2010) 7736.10.1039/c002129fSuche in Google Scholar

7. S. H. Jungbauer, S. Schindler, F. Kniep, S. M. Walter, L. Rout, S. M. Huber, Synlett 24 (2013) 2624.10.1055/s-0033-1338981Suche in Google Scholar

8. S. Schindler, S. M. Huber, In: Halogen Bonding II: Impact on Materials Chemistry and Life Sciences, (Eds. P. Metrangolo and G. Resnati), volume 359, Springer International Publishing, Cham (2015), p. 167.Suche in Google Scholar

9. S. H. Jungbauer, S. M. Huber, J. Am. Chem. Soc. 137 (2015) 12110.10.1021/jacs.5b07863Suche in Google Scholar

10. P. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 12 (2010) 7748.10.1039/c004189kSuche in Google Scholar

11. O. Hassel, J. Hvoslef, Acta Chem. Scand. 8 (1954) 873.10.3891/acta.chem.scand.08-0873Suche in Google Scholar

12. P. Auffinger, F. A. Hays, E. Westhof, P. S. Ho, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 16789.10.1073/pnas.0407607101Suche in Google Scholar

13. I. Morishima, T. Inubushi, T. Yonezawa, K. Endo, Chem. Phys. Lett. 14 (1972) 372.10.1016/0009-2614(72)80136-2Suche in Google Scholar

14. I. Morishima, T. Yonezawa, K. Endo, T. Inubushi, K. Goto, J. Am. Chem. Soc. 94 (1972) 4812.10.1021/ja00769a003Suche in Google Scholar

15. I. Morishima, T. Inubushi, T. Yonezawa, J. Am. Chem. Soc. 98 (1976) 3808.10.1021/ja00429a012Suche in Google Scholar

16. Y. Hosokoshi, M. Tamura, K. Nozawa, S. Suzuki, M. Kinoshita, H. Sawa, R. Kato, Synth. Met. 71 (1995) 1795.10.1016/0379-6779(94)03054-ASuche in Google Scholar

17. F. Iwasaki, J. H. Yoshikawa, H. Yamamoto, E. Kan-Nari, K. Takada, M. Yasui, T. Ishida, T. Nogami, Acta Crystallogr. Sect. B: Struct. Sci. 55 (1999) 231.10.1107/S0108768198012786Suche in Google Scholar

18. I. M. Ganiev, Q. K. Timerghazin, A. F. Khalizov, N. M. Andriyashina, V. V. Shereshovets, L. B. Volodarsky, G. A. Tolstikov, Tetrahedron Lett. 40 (1999) 4737.10.1016/S0040-4039(99)00837-0Suche in Google Scholar

19. I. M. Ganiev, Q. K. Timerghazin, A. F. Khalizov, V. V. Shereshovets, A. I. Grigor’ev, G. A. Tolstikov, J. Phys. Org. Chem. 14 (2001) 38.10.1002/1099-1395(200101)14:1<38::AID-POC334>3.0.CO;2-ZSuche in Google Scholar

20. K. Boubekeur, J. L. Syssa-Magale, P. Palvadeau, B. Schollhorn, Tetrahedron Lett. 47 (2006) 1249.10.1016/j.tetlet.2005.12.088Suche in Google Scholar

21. V. Mugnaini, C. Punta, R. Liantonio, P. Metrangolo, F. Recupero, G. Resnati, G. F. Pedulli, M. Lucarini, Tetrahedron Lett. 47 (2006) 3265.10.1016/j.tetlet.2006.03.033Suche in Google Scholar

22. G. R. Hanson, P. Jensen, J. McMurtrie, L. Rintoul, A. S. Micallef, Chem. – Eur. J. 15 (2009) 4156.10.1002/chem.200801920Suche in Google Scholar

23. G. M. Espallargas, A. Recuenco, F. M. Romero, L. Brammer, S. Libri, CrystEngComm 14 (2012) 6381.10.1039/c2ce26131fSuche in Google Scholar

24. P. Cimino, M. Pavone, V. Barone, J. Phys. Chem. A 111 (2007) 8482.10.1021/jp073567bSuche in Google Scholar PubMed

25. C. Cavallotti, P. Metrangolo, F. Meyer, F. Recupero, G. Resnati, J. Phys. Chem. A 112 (2008) 9911.10.1021/jp803685rSuche in Google Scholar PubMed

26. A. Savitsky, M. Plato, K. Möbius, Appl. Magn. Reson. 37 (2010) 415.10.1007/s00723-009-0064-9Suche in Google Scholar

27. A. Nalepa, K. Möbius, W. Lubitz, A. Savitsky, J. Magn. Reson. 242 (2014) 203.10.1016/j.jmr.2014.02.026Suche in Google Scholar PubMed

28. E. Bordignon, A. I. Nalepa, A. Savitsky, L. Braun, G. Jeschke, J. Phys. Chem. B 119 (2015) 13797.10.1021/acs.jpcb.5b04104Suche in Google Scholar PubMed

29. A. Savitsky, A. A. Dubinskii, M. Plato, Y. A. Grishin, H. Zimmermann, K. Möbius, J. Phys. Chem. B 112 (2008) 9079.10.1021/jp711640pSuche in Google Scholar PubMed

30. K. Möbius, A. Savitsky, A. Schnegg, M. Plato, M. Fuchs, Phys. Chem. Chem. Phys. 7 (2005) 19.10.1039/B412180ESuche in Google Scholar PubMed

31. K. Möbius, A. Savitsky, High-Field EPR Spectroscopy on Proteins and their Model Systems, RSC Publishing, Cambridge, UK (2008).Suche in Google Scholar

32. O. Burghaus, M. Rohrer, T. Götzinger, M. Plato, K. Möbius, Meas. Sci. Technol. 3 (1992) 765.10.1088/0957-0233/3/8/013Suche in Google Scholar

33. E. L. Hahn, Phys. Rev. 80 (1950) 580.10.1103/PhysRev.80.580Suche in Google Scholar

34. L. G. Rowan, E. L. Hahn, W. B. Mims, Phys. Rev. 137 (1965) A61.10.1103/PhysRev.137.A61Suche in Google Scholar

35. P. Schosseler, T. Wacker, A. Schweiger, Chem. Phys. Lett. 224 (1994) 319.10.1016/0009-2614(94)00548-6Suche in Google Scholar

36. W. B. Mims, Proc. R. Soc. Lond. A 283 (1965) 452.10.1098/rspa.1965.0034Suche in Google Scholar

37. R. Improta, V. Barone, Chem. Rev. 104 (2004) 1231.10.1021/cr960085fSuche in Google Scholar

38. T. Kawamura, S. Matsunam, T. Yonezawa, Bull. Chem. Soc. Jpn. 40 (1967) 1111.10.1246/bcsj.40.1111Suche in Google Scholar

39. O. H. Griffith, P. J. Dehlinge, S. P. Van, J. Membr. Biol. 15 (1974) 159.10.1007/BF01870086Suche in Google Scholar

40. R. Owenius, M. Engstrom, M. Lindgren, M. Huber, J. Phys. Chem. A 105 (2001) 10967.10.1021/jp0116914Suche in Google Scholar

41. P. Franchi, M. Lucarini, P. Pedrielli, G. F. Pedulli, ChemPhysChem 3 (2002) 789.10.1002/1439-7641(20020916)3:9<789::AID-CPHC789>3.0.CO;2-ZSuche in Google Scholar

42. H. Lefebvre-Brion, R. W. Field, Perturbations in the Spectra of Diatomic Molecules, Academic Press, Inc., Orlando (1986).Suche in Google Scholar

43. M. Engstrom, R. Owenius, O. Vahtras, Chem. Phys. Lett. 338 (2001) 407.10.1016/S0009-2614(01)00311-6Suche in Google Scholar

44. B. C. Gilbert, R. O. C. Norman, J. Chem. Soc. B (1967) 981.10.1039/j29670000981Suche in Google Scholar

45. H. Sillescu, Mol. Phys. 14 (1968) 381.10.1080/00268976800100461Suche in Google Scholar

46. E. F. Ullman, L. Call, J. H. Osiecki, J. Org. Chem. 35 (1970) 3623.10.1021/jo00836a008Suche in Google Scholar

47. N. Cox, W. Lubitz, A. Savitsky, Mol. Phys. 111 (2013) 2788.10.1080/00268976.2013.830783Suche in Google Scholar

48. N. Cox, A. Nalepa, M. E. Pandelia, W. Lubitz, A. Savitsky, in: Methods in Enzymology, (Eds. P. Z. Qin and K. Warncke), volume 563, Elsevier, Amsterdam (2015), p. 211.10.1016/bs.mie.2015.08.016Suche in Google Scholar

Received: 2016-7-20
Accepted: 2016-10-9
Published Online: 2016-11-4
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2016-0870/html?lang=de
Button zum nach oben scrollen