Abstract
Magnetic nanoparticles (MNPs) of spinel type iron oxide (of approximately 4 nm) mineralized inside the internal cavity of a mini ferritin-type protein have been investigated by means of electron magnetic resonance (EMR) spectroscopy. EMR measurements have been recorded at different temperatures in perpendicular and parallel configurations. The spectra have been interpreted using an approach based on the giant spin model. We confirm the quantum behavior of the MNPs, moreover, the thermal evolution of the spin system in terms of population of excited spin states is showed.
Dedicated to: Professor Dr. Kev Salikhov in occasion of his 80th birthday for his outstanding contribution in the field of magnetic resonance.
Acknowledgements
Dr. Silvia Sottini is acknowledged for her help during the EMR measurements.
References
1. M. Fittipaldi, L. Sorace, A.-L. Barra, C. Sangregorio, Phys. Chem. Chem. Phys. 11 (2009) 6553.10.1039/b913085nSuche in Google Scholar
2. W. Wernsdorfer, Adv. Chem. Phys. 118 (2001) 99.10.1016/S0026-0576(01)80705-4Suche in Google Scholar
3. A.-H. Lu, E. L. Salabas, F. Schüth, Angew. Chemie Int. Ed. 46 (2007) 1222.10.1002/anie.200602866Suche in Google Scholar
4. A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bönnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer and F. Schüth, Angew. Chemie – Int. Ed. 43 (2004) 4303.10.1002/anie.200454222Suche in Google Scholar
5. T. Hyeon, Chem. Commun. 271 (2003) 927.10.1039/b207789bSuche in Google Scholar
6. T. Shinjo (Ed.), Nanomagnetism and Spintronics, Elsevier, Amsterdam, The Netherlands (2009).Suche in Google Scholar
7. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Muller, Chem. Rev. 108 (2008) 2064.10.1021/cr068445eSuche in Google Scholar
8. W. Andrä, H. Nowak (Ed.), Magnetism in Medicine: A Handbook, Wiley – VCH, Weinheim, Germany (2007).10.1002/9783527610174Suche in Google Scholar
9. S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa, Y. Kurihara, J. Magn. Magn. Mater. 65 (1987) 245.10.1016/0304-8853(87)90043-6Suche in Google Scholar
10. A. K. Gupta, M. Gupta, Biomaterials 26 (2005) 3995.10.1016/j.biomaterials.2004.10.012Suche in Google Scholar PubMed
11. Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. D. Appl. Phys. 36 (2003) R167.10.1088/0022-3727/36/13/201Suche in Google Scholar
12. D. W. Elliott, W. Zhang, Environ. Sci. Technol. 35 (2001) 4922.10.1021/es0108584Suche in Google Scholar PubMed
13. M. Takafuji, S. Ide, H. Ihara, Z. Xu, Chem. Mater. 16 (2004) 1977.10.1021/cm030334ySuche in Google Scholar
14. E. Fantechi, C. Innocenti, M. Zanardelli, M. Fittipaldi, E. Falvo, M. Carbo, V. Shullani, L. Cesare Mannelli, C. Ghelardini, A. M. Ferretti, A. Ponti, C. Sangregorio, P. Ceci, ACS Nano 8 (2014) 4705.10.1021/nn500454nSuche in Google Scholar PubMed
15. D. Gatteschi, M. Fittipaldi, C. Sangregorio, L. Sorace, Angew. Chemie Int. Ed. 51 (2012) 4792.10.1002/anie.201105428Suche in Google Scholar PubMed
16. M. Fittipaldi, C. Innocenti, P. Ceci, C. Sangregorio, L. Castelli, L. Sorace, D. Gatteschi, Phys. Rev. B Condens. Matter Mater. Phys. 83 (2011) 104409.10.1103/PhysRevB.83.104409Suche in Google Scholar
17. P. Ceci, E. Chiancone, O. Kasyutich, G. Bellapadrona, L. Castelli, M. Fittipaldi, D. Gatteschi, C. Innocenti, C. Sangregorio, Chem. – A Eur. J. 16 (2010) 709.10.1002/chem.200901138Suche in Google Scholar PubMed
18. N. Noginova, T. Weaver, E. P. Giannelis, A. B. Bourlinos, V. A. Atsarkin, V. V. Demidov, Phys. Rev. B – Condens. Matter Mater. Phys. 77 (2008) 1.10.1103/PhysRevB.77.014403Suche in Google Scholar
19. M. Fittipaldi, R. Mercatelli, S. Sottini, P. Ceci, E. Falvo, D. Gatteschi, Phys. Chem. Chem. Phys. 18 (2016) 3591.10.1039/C5CP07018JSuche in Google Scholar PubMed
20. A.-L. Barra, L.-C. Brunel, D. Gatteschi, L. Pardi, R. Sessoli, Acc. Chem. Res. 31 (1998) 460.10.1021/ar960157pSuche in Google Scholar
21. D. Gatteschi, A. L. Barra, A. Caneschi, A. Cornia, R. Sessoli, L. Sorace, Coord. Chem. Rev. 250 (2006) 1514.10.1016/j.ccr.2006.02.006Suche in Google Scholar
22. E. J. L. McInnes, Spectroscopy of Single-molecule Magnets, Springer, Berlin, Germany (2006).10.1007/430_034Suche in Google Scholar
23. R. S. Edwards, S. Maccagnano, E. C. Yang, S. Hill, W. Wernsdorfer, D. Hendrickson, G. Christou, J. Appl. Phys. 93 (2003) 7807.10.1063/1.1540050Suche in Google Scholar
24. S. Hill, S. Maccagnano, K. Park, R. M. Achey, J. M. North, N. S. Dalal, Phys. Rev. B 65 (2002) 224410.10.1103/PhysRevB.65.224410Suche in Google Scholar
25. O. Kasyutich, A. Ilari, A. Fiorillo, D. Tatchev, A. Hoell, P. Ceci, J. Am. Chem. Soc. 132 (2010) 3621.10.1021/ja910918bSuche in Google Scholar PubMed
26. S. Stoll, A. Schweiger, J. Magn. Reson. 178 (2006) 42.10.1016/j.jmr.2005.08.013Suche in Google Scholar PubMed
27. F. Moro, R. De Miguel, M. Jenkins, C. Gómez-Moreno, D. Sells, F. Tuna, E. J. L. McInnes, A. Lostao, F. Luis, J. Van Slageren, J. Magn. Magn. Mater. 361 (2014) 188.10.1016/j.jmmm.2014.02.053Suche in Google Scholar
28. L. Castelli, M. Fittipaldi, A. K. Powell, D. Gatteschi, L. Sorace, Dalton Trans. 40 (2011) 8145.10.1039/c1dt10311cSuche in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency
Artikel in diesem Heft
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency