Startseite Naturwissenschaften THz ESR study of Spinel Compound GeCo2O4
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

THz ESR study of Spinel Compound GeCo2O4

  • Susumu Okubo , Hitoshi Ohta EMAIL logo , Tatsuya Ijima , Tatsuya Yamasaki , Weimin Zhang , Shigeo Hara , Shinichi Ikeda , Hiroyuki Oshima , Miwako Takahashi , Keisuke Tomiyasu und Tadataka Watanabe
Veröffentlicht/Copyright: 15. Oktober 2016

Abstract

We performed terahertz ESR measurements of spin frustrated spinel compound GeCo2O4 using pulsed magnetic fields of up to 40 T. A very broad EPR absorption line was observed at 86 K. The g-values at 86 K were estimated to be g=5.26±0.07, 5.16±0.12 and 4.98±0.07 for B//[111], [100] and [110], respectively. High-field ESR measurements revealed complicated phase structures and a field-induced magnetic phase below 3 K. Critical fields of magnetic phases at 1.8 K for B//[111] were observed at 1.8 T, 5.0 T, 8.6 T, 11.0 T and 12.9 T for B//[111]. An energy gap of 300 GHz (=14.4 K=1.24 meV), which was related to the lattice deformation, was observed for B//[111]. The zero field gap of ω4 mode, which is considered to be a singlet-triplet excitation of the di-tetramer, was estimated to be 1120 GHz.


Dedicated to: Kev Salikhov on the occasion of his 80th birthday.


Acknowledgements

The authors would like to thank Prof. Kev Salikhov for fruitful discussions. This research was partially supported by a Grant-in-Aid for Challenging Exploratory Research (No. 26610104) and a Grant-in-Aid for Scientific Research (C) (No. 26400335) from the Japan Society for the Promotion of Science (JSPS).

References

1. A. Ramirez, Rev. Mater. Sci. B 24 (1994) 453.10.1146/annurev.ms.24.080194.002321Suche in Google Scholar

2. T. Suzuki, M. Matsumura, K. Taniguchi, T. Arima, T. Katsufuji, Phys. Rev. Lett. 98 (2007) 127203.10.1103/PhysRevLett.98.127203Suche in Google Scholar PubMed

3. D. Khomskii, M. Mostovoy, J. Phys. A 36 (2003) 9197.10.1088/0305-4470/36/35/307Suche in Google Scholar

4. R. Fichtl, V. Tsurkan, P. Lunkenheimer, J. Hemberger, V. Fritsch, H-A. Krung von Nidda, E-W. Scheidt, A. Loidl, Phys. Rev. Lett. 94 (2005) 027601.10.1103/PhysRevLett.94.027601Suche in Google Scholar PubMed

5. K. Penc, N. Shannon, H. Shiba, Phys. Rev. Lett. 93 (2004) 197203.10.1103/PhysRevLett.93.197203Suche in Google Scholar PubMed

6. A. Miyata, H. Ueda, Y. Ueda, H. Sawabe, S. Takeyama, Phys. Rev. Lett. 107 (2011) 207203.10.1103/PhysRevLett.107.207203Suche in Google Scholar PubMed

7. W. Zhang, S. Okubo, H. Ohta, T. Saito, M. Takano, Phys. Stat. Sol. C 8 (2006) 2824.10.1002/pssc.200669629Suche in Google Scholar

8. M. Yoshida, T. Hirano, Y. Inagaki, S. Okubo, H. Ohta, H. Kikuchi, I. Kagomiya, M. Toki, K. Kohn, J. Phys. Soc. Jpn. 75 (2006) 044709.10.1143/JPSJ.75.044709Suche in Google Scholar

9. K. Yamada, M. Matsuda, Y. Endoh, B. Keimer, R. J. Birgeneau, S. Onodera, J. Mizusaki, T. Matsuura, G. Shirane, Phys. Rev. B 39 (1989) 2336.10.1103/PhysRevB.39.2336Suche in Google Scholar

10. K. Momma, F. Izumi, J. Appl. Crystallogr. 44 (2011) 1272.10.1107/S0021889811038970Suche in Google Scholar

11. F. C. Romejin, Philips Res. Rep. 8 (1953) 304.10.1177/002070205300800421Suche in Google Scholar

12. S. Diaz, S. de Brio, M. Holzapfel, G. Chouteau, P. Strobel, Physica B 346–347 (2004) 146.10.1016/j.physb.2004.01.038Suche in Google Scholar

13. T. Hoshi, H. Aruga Katori, M. Kosaka, H. Takagi, J. Magn. Magn. Mater. 310 (2007) 448.10.1016/j.jmmm.2006.10.845Suche in Google Scholar

14. T. Watanabe, S. Hara, S. Ikeda, Phys. Rev. B 78 (2008) 094420.10.1103/PhysRevB.78.094420Suche in Google Scholar

15. S. Diaz, S. de Brion, G. Chouteau, P. Strobel, B. Canals, J. R. Carvajal, H. Rakoto, J. M. Broto, J. Appl. Phys. 97 (2005) 10A512.10.1063/1.1863113Suche in Google Scholar

16. R. Stevens, B. F. Woodfield, J. Boerio-Goates, M. K. Crawford, J. Chem. Thermodynamics 36 (2004) 359.10.1016/j.jct.2003.12.011Suche in Google Scholar

17. J. Hubsch, G. Gavoille, J. Magn. Magn. Mater. 66 (1987) 17.10.1016/0304-8853(87)90122-3Suche in Google Scholar

18. J. C. Lashley, R. Stevens, M. K. Crawford, J. Boerio-Goates, B. F. Woodfield, J. W. Lynn, P. A. Goddard, R. A. Fisher, Phys. Rev. B 78 (2008) 104406.10.1103/PhysRevB.78.104406Suche in Google Scholar

19. K. Tomiyasu, A. Tominaga, S. Hara, H. Sato, T. Watanabe, S. Ikeda, H. Hiraka, K. Iwasa, K. Yamada, J. Phys.: Conf. Serie. 320 (2011) 012038.10.1088/1742-6596/320/1/012038Suche in Google Scholar

20. S. Diaz, S. de Brion, G. Chouteau, B. Canais, V. Simonet, P. Strobel, Phys. Rev. B 74 (2006) 092404.10.1103/PhysRevB.74.092404Suche in Google Scholar

21. T. Yamasaki, S. Okubo, H. Ohta, T. Sakurai, S. Ikeda, H. Oshima, M. Takahashi, S. Hara, K. Tomiyasu, T. Watanabe, J. Phys.: Conf. Serie. 400 (2012) 032119.10.1088/1742-6596/400/3/032119Suche in Google Scholar

22. S. Hara, Y. Yoshida, S. Ikeda, N. Shirakawa, M. K. Crawford, K. Takase, Y. Takano, K. Sekizawa, J. Cryst. Growth 283 (2005) 185.10.1016/j.jcrysgro.2005.05.078Suche in Google Scholar

23. N. Nakagawa, T. Yamada, K. Akioka, S. Okubo, S. Kimura, H. Ohta, Int. J. Infrared Millimeter Waves 19 (1998) 167.10.1023/A:1022511405901Suche in Google Scholar

24. M. Motokawa, H. Ohta, N. Maki, Int. J. Infrared Millimeter Waves 12 (1991) 149.10.1007/BF01009889Suche in Google Scholar

25. S. Kimura, H. Ohta, M. Motokawa, S. Mitsudo, W.-J. Jang, M. Hasegawa, H. Takei, Int. J. Infrared Millimeter Waves 17 (1996) 833.10.1007/BF02101391Suche in Google Scholar

26. H. Ohta, M. Tomoo, S. Okubo, T. Sakurai, M. Fujisawa, T. Tomita, M. Kimata, T. Yamamoto, M. Kawauchi, K. Kindo, J. Phys: Conf. Serie. 61 (2006) 611.10.1088/1742-6596/51/1/140Suche in Google Scholar

27. S. Okubo, H. Ohta, Y. Inagaki, T. Sakurai, Physica B 346–347 (2004) 627.10.1016/j.physb.2004.01.072Suche in Google Scholar

28. A. Abragam, M. H. L. Pryce, Proc. Royal. Soc. London. Serie. A 206 (1951) 173.10.1098/rspa.1951.0063Suche in Google Scholar

29. M. E. Lines, Phys. Rev. 131 (1963) 546.10.1103/PhysRev.131.546Suche in Google Scholar

30. H. Shiba, Y. Ueda, K. Okunichi, S. Kimura, K. Kindo, J. Phys. Soc. Jpn. 72 (2003) 2326.10.1143/JPSJ.72.2326Suche in Google Scholar

31. P. T. Barton, M. C. Kemei, M. W. Gaultois, S. L. Moffitt, L. E. Darago, R. Seshadri, M. R. Suchomel, B. C. Melot, Phys. Rev. B 90 (2014) 064105.10.1103/PhysRevB.90.064105Suche in Google Scholar

32. K. Tomiyasu, M. K. Crawford, D. T. Adroja, P. Manuel, A. Tominaga, S. Hara, H. Sato, T. Watanabe, Phys. Rev. B 84 (2011) 054405.10.1103/PhysRevB.84.054405Suche in Google Scholar

33. K. Nagata, Y. Tazuke, J. Phys. Soc. Jpn. 32 (1972) 337.10.1143/JPSJ.32.337Suche in Google Scholar

34. Y. Tsunoda, H. Suzuki, S. Katano, K. Siratori, E. Kita, K. Kohn, J. Phys. Soc. Jpn. 75 (2006) 064710.10.1143/JPSJ.75.064710Suche in Google Scholar

35. H. Ohta, S. Okubo, S. Ono, H. Kikuchi, Phys. Stat. Sol. C 8 (2006) 2816.10.1002/pssc.200669533Suche in Google Scholar

36. T. Watanabe, S. Hara, S. Ikeda, K. Tomiyasu, Phys. Rev. 84 (2011) 020409.10.1103/PhysRevB.84.020409Suche in Google Scholar

37. The critical field resonance has been pointed out theoretically by Nagamiya. T. Nagamiya, Prog. Theor. Phys. 11 (1954) 309.10.1143/PTP.11.309Suche in Google Scholar

38. The critical field resonance has been observed experimentally by M. Data group. M. Date, K. Nagata, J. Appl. Phys. 34 (1963) 1038.10.1063/1.1729361Suche in Google Scholar

39. The detail angular dependence measurements of the critical field resonance for antiferromagnet CuCl2·2H2O has been reported by K. Nagata. An absorption intensity of the critical field resonance decreases abruptly, when the applied magnetic field parallels absolutely the easy axis within 0.1°. K. Nagata, H. Yamazaki, M. Date, Abstract of the meetings of Physical Society of Japan 18th Annual Meeting, 1963, Part 4, p. 435, 7p-F-6Suche in Google Scholar

40. H. Nojiri, H. Ohta, S. Okubo, O. Fujita, J. Akimitsu, M. Motokawa, J. Phys. Soc. Jpn. 68 (1999) 3417.10.1143/JPSJ.68.3417Suche in Google Scholar

41. H. Aruga Katori, “Novel States of Matter Induced by Frustration” Meeting in Osaka Univ. at Jan., 2012.Suche in Google Scholar

42. H. Ueda, H. Mitamura, T. Goto, Y. Ueda, Phys. Rev. B 73 (2006) 094415.10.1103/PhysRevB.73.094415Suche in Google Scholar

43. S. Kimura, M. Hagiwara, T. Takeuchi, H. Yamaguchi, H. Ueda, Y. Ueda, K. Kindo, Phys. Rev. B 83 (2011) 214401.10.1103/PhysRevB.83.214401Suche in Google Scholar

44. M. Date, M. Motokawa, Phys. Rev. Lett. 16 (1966) 1111.10.1103/PhysRevLett.16.1111Suche in Google Scholar

45. M. Date, M. Motokawa, J. Phys. Soc. Jpn. 24 (1968) 41.10.1143/JPSJ.24.41Suche in Google Scholar

46. T. Kunimoto, K. Nagasaka, H. Nojiri, S. Luther, M. Motokawa, H. Ohta, T. Goto, S. Okubo, K. Kohn, J. Phys. Soc. Jpn. 68 (1999) 170310.1143/JPSJ.68.1703Suche in Google Scholar

Received: 2016-6-22
Accepted: 2016-9-22
Published Online: 2016-10-15
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2016-0841/html?lang=de
Button zum nach oben scrollen