Startseite Naturwissenschaften Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations

  • Dzhalil F. Khabibulin , Evgeniy Papulovskiy , Andrey S. Andreev , Aleksandr A. Shubin , Alexander M. Volodin , Galina A. Zenkovets , Dmitriy A. Yatsenko , Sergey V. Tsybulya und Olga B. Lapina EMAIL logo
Veröffentlicht/Copyright: 15. Oktober 2016

Abstract

For the first time, the detailed structure of χ-Al2O3 and η-Al2O3 surface has been established by implementing the NMR crystallography approach. The surface of η-Al2O3 has been demonstrated to be formed primarily by the (111) facets, while the χ-Al2O3 surface is a combination of (111) and (110) facets. This observation supports the block model of aluminum oxides previously proposed by Tsybulya and Kryukova [S. V. Tsybulya, G. N. Kryukova, Phys. Rev. B 77 (2008) 024112.]. The additional terminal OH groups, observed experimentally and not contributing to (111) and (110) theoretical calculations, are considered to be bonded to the tetrahedral aluminum sites. Their origin is related to the junctions of crystallographic faces of spinel building blocks, being a part of discussed model. Higher content of these terminal OH groups in χ-Al2O3 is a result of more junctions in the case of its more mosaic structure compared to η-Al2O3.


Dedicated to: Kev Salikhov on the occasion of his 80th birthday.


Award Identifier / Grant number: 14-23-00037

Funding statement: Authors gratefully acknowledge the Russian Science Foundation (RSF grant 14-23-00037 “Design of functional nanomaterials: phenomena of self-assembly of 3D nanostructures and nanocomposites in oxide systems”) for the financial support.

Acknowledgement

Authors gratefully acknowledge the Russian Science Foundation (RSF grant 14-23-00037 “Design of functional nanomaterials: phenomena of self-assembly of 3D nanostructures and nanocomposites in oxide systems”) for the financial support.

References

1. B. C. Lippens, J. J. Steggerda (Ed.), Physical and Chemical Aspects of Adsorbents and Catalysts, Academic Press Inc., New York (1970).Suche in Google Scholar

2. Z. M. George, Phosphorous Sulfur Relat. Elem. 1 (1976) 315.10.1080/03086647608073341Suche in Google Scholar

3. J. H. Gary, G. E. Handwerk, Petroleum Refining. Nechnology and Economics, 2nd ed. Marcel Dekker, Inc, New York (1984).Suche in Google Scholar

4. A. Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 107 (2007) 1692.10.1021/cr050972vSuche in Google Scholar

5. L. D. (LeRoy D. . Hart, E. Lense, Alumina Chemicals: Science and Technology Handbook, American Ceramic Society, New York (1990).Suche in Google Scholar

6. G. Paglia, C. E. Buckley, A. L. Rohl, B. A. Hunter, R. D. Hart, J. V. Hanna, L. T. Byrne, Phys. Rev. B 68 (2003) 144110.10.1103/PhysRevB.68.144110Suche in Google Scholar

7. R. Lizárraga, E. Holmström, S. C. Parker, C. Arrouvel, Phys. Rev. B 83 (2011) 094201.10.1103/PhysRevB.83.094201Suche in Google Scholar

8. C. Pecharroman, I. Sobrados, J. E. Iglesias, T. Gonzalez-Carreno, J. Sanz, C. Pecharromán, I. Sobrados, J. E. Iglesias, T. González-Carreño, J. Sanz, J. Phys. Chem. B 103 (1999) 6160.10.1021/jp983316qSuche in Google Scholar

9. D. Müller, W. Gessner, A. Samoson, E. Lippmaa, G. Scheler, J. Chem. Soc. Dalt. Trans. (1986) 1277.10.1039/DT9860001277Suche in Google Scholar

10. M.-H. Lee, C.-F. Cheng, V. Heine, J. Klinowski, Chem. Phys. Lett. 265(1997) 673.10.1016/S0009-2614(96)01492-3Suche in Google Scholar

11. J. J. Fitzgerald, In ACS Symp. Ser. Vol. 717. Solid-State NMR Spectrosc. Inorg. Mater., edited by J. J. Fitzgerald, American Chemical Society (1999), P. 182–226.10.1021/bk-1999-0717.ch005Suche in Google Scholar

12. D. F. Khabibulin, A. M. Volodin, O. B. Lapina, J. Struct. Chem. 57 (2016) 354.10.1134/S0022476616020165Suche in Google Scholar

13. C. S. John, N. C. Alma, G. R. Hays, Appl. Catal. 6 (1983) 341.10.1016/0166-9834(83)80106-7Suche in Google Scholar

14. R. H. Meinhold, R. C. T. Slade, R. H. Newman, Appl. Magn. Reson. 4 (1993) 121.10.1007/BF03162559Suche in Google Scholar

15. G. Kunath-Fandrei, T. J. Bastow, J. S. Hall, C. Jaeger, M. E. Smith, J. Phys. Chem. 99 (1995) 15138.10.1021/j100041a033Suche in Google Scholar

16. S. V. Tsybulya, G. N. Kryukova, Phys. Rev. B 77 (2008) 024112.10.1103/PhysRevB.77.024112Suche in Google Scholar

17. L. Kovarik, M. Bowden, A. Genc, J. Szanyi, C. H. F. Peden, J. H. Kwak, J. Phys. Chem. C 118 (2014) 18051.10.1021/jp500051jSuche in Google Scholar

18. M. Taoufik, K. C. Szeto, N. Merle, I. Del Rosal, L. Maron, J. Trébosc, G. Tricot, R. M. Gauvin, L. Delevoye, Chemistry 20 (2014) 4038.10.1002/chem.201304883Suche in Google Scholar

19. D. Lee, N. T. Duong, O. Lafon, G. De Paëpe, J. Phys. Chem. C 118 (2014) 25065.10.1021/jp508009xSuche in Google Scholar

20. G. Busca, Catal. Today 226 (2014) 2.10.1016/j.cattod.2013.08.003Suche in Google Scholar

21. J. B. Peri, J. Phys. Chem. 69 (1965) 220.10.1021/j100885a033Suche in Google Scholar

22. A. A. Tsyganenko, V. N. Filimonov, J. Mol. Struct. 19 (1973) 579.10.1016/0022-2860(73)85136-1Suche in Google Scholar

23. C. Morterra, A. Chiorino, G. Ghiotti, E. Garrone, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 75 (1979) 271.10.1039/f19797500271Suche in Google Scholar

24. H. Knözinger, P. Ratnasamy, Catal. Rev. Sci. Eng. 17 (1978) 31.10.1080/03602457808080878Suche in Google Scholar

25. R. K. Harris, R. E. Wasylishen, M. J. Duer, NMR Crystallography, 1st ed. Wiley (2009).Suche in Google Scholar

26. X. Filip, C. Filip, Solid State Nucl. Magn. Reson. 65 (2015) 21.10.1016/j.ssnmr.2014.10.006Suche in Google Scholar PubMed

27. C. Martineau, J. Senker, F. Taulelle, Annu. Reports NMR Spectrosc. 82 (2014) 1.10.1016/B978-0-12-800184-4.00001-1Suche in Google Scholar

28. V. R. Seymour, E. C. V. Eschenroeder, P. A. Wright, S. E. Ashbrook, Solid State Nucl. Magn. Reson. 65 (2015) 64.10.1016/j.ssnmr.2014.10.007Suche in Google Scholar

29. R. Wischert, P. Florian, C. Copéret, D. Massiot, P. Sautet, J. Phys. Chem. C 118 (2014) 15292.10.1021/jp503277mSuche in Google Scholar

30. V. M. Mastikhin, I. L. Mudrakovsky, A. V. Nosov, Prog. Nucl. Magn. Reson. Spectrosc. 23 (1991) 259.10.1016/0079-6565(91)80006-NSuche in Google Scholar

31. A. M. Volodin, A. F. Bedilo, I. V. Mishakov, V. I. Zaikovskii, A. A. Vedyagin, R. M. Kenzhin, V. O. Stoyanovskii, K. S. Golohvast, Nanotechnologies Russ. 9 (2014) 700.10.1134/S1995078014060184Suche in Google Scholar

32. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Zeitschrift Für Krist. 220 (2005) 567.10.1524/zkri.220.5.567.65075Suche in Google Scholar

33. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671.10.1103/PhysRevB.46.6671Suche in Google Scholar

34. D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.10.1103/PhysRevB.41.7892Suche in Google Scholar PubMed

35. J. Yates, C. Pickard, F. Mauri, Phys. Rev. B 76 (2007) 024401.10.1103/PhysRevB.76.024401Suche in Google Scholar

36. B. G. Pfrommer, M. Côté, S. G. Louie, M. L. Cohen, J. Comput. Phys. 131 (1997) 233.10.1006/jcph.1996.5612Suche in Google Scholar

37. C. J. Pickard, F. Mauri, Phys. Rev. B 63 (2001) 245101.10.1103/PhysRevB.63.245101Suche in Google Scholar

38. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.10.1103/PhysRevLett.77.3865Suche in Google Scholar

39. A. R. Ferreira, M. J. F. Martins, E. Konstantinova, R. B. Capaz, W. F. Souza, S. S. X. Chiaro, A. A. Leitão, J. Solid State Chem. 184 (2011) 1105.10.1016/j.jssc.2011.03.016Suche in Google Scholar

40. M. Digne, P. Sautet, P. Raybaud, P. Euzen, H. Toulhoat, J. Catal. 211 (2002) 1.10.1016/S0021-9517(02)93741-3Suche in Google Scholar

41. M. Digne, J. Catal. 226 (2004) 54.10.1016/j.jcat.2004.04.020Suche in Google Scholar

42. A. R. Ferreira, E. Küçükbenli, S. de Gironcoli, W. F. Souza, S. S. X. Chiaro, E. Konstantinova, A. A. Leitão, Chem. Phys. 423 (2013) 62.10.1016/j.chemphys.2013.06.024Suche in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/zpch-2016-0822) offers supplementary material, available to authorized users.


Received: 2016-6-14
Accepted: 2016-9-19
Published Online: 2016-10-15
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2016-0822/html?lang=de
Button zum nach oben scrollen