Home Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
Article
Licensed
Unlicensed Requires Authentication

Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds

  • Christian Näther EMAIL logo , Inke Jess and Sebastian Mangelsen EMAIL logo
Published/Copyright: March 8, 2023
Become an author with De Gruyter Brill

Abstract

Reaction of zinc(II) chloride, bromide and iodide with 2-methylpyrazine (2-Mepyz) leads to the formation of coordination compounds with the composition ZnX2(2-Mepyz)2 (X = Cl; 1-Cl, Br; 1-Br and I; 1-I). In the compounds each Zn cation is tetrahedrally coordinated by two halide anions and two 2-methylpyrazine ligands forming discrete complexes. TG-DTA and temperature dependent PXRD measurements prove that upon heating compounds 1 transform into new compounds with the composition ZnX2(2-Mepyz) (2), that are subsequently converted into compounds with the composition (ZnX2)3(2-Mepyz) (3) upon further heating. It was also found that compounds 2 can be prepared directly in solution. For ZnI2(2-Mepyz) (2-I) crystals were obtained and characterized by single crystal X-ray diffraction, whereas the crystal structures of 2-Cl and 2-Br were determined ab initio from PXRD data. In these compounds the Zn cations are also tetrahedrally coordinated and linked into chains by bridging 2-methylpyrazine ligands. The (ZnX2)3(2-Mepyz) compounds can only be obtained by thermal decomposition, and the products are of poor crystallinity and extremely hygroscopic, which prevented structure determinations.


Corresponding authors: Christian Näther and Sebastian Mangelsen, Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany, E-mail: (C. Näther), (S. Mangelsen)
Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.

Funding source: State of Schleswig-Holstein

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the state of Schleswig-Holstein.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Braga, D., Curzi, M., Grepioni, F., Polito, M. Chem. Commun. 2005, 2915–2917; https://doi.org/10.1039/b503404c.Search in Google Scholar PubMed

2. James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friscic, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W., Waddell, D. C. Chem. Soc. Rev. 2012, 41, 413–447; https://doi.org/10.1039/c1cs15171a.Search in Google Scholar PubMed

3. Braga, D., Giaffreda, S. L., Grepioni, F., Pettersen, A., Maini, L., Curzi, M., Polito, M. Dalton Trans. 2006, 1249–1263; https://doi.org/10.1039/b516165g.Search in Google Scholar PubMed

4. Braga, D., Curzi, M., Lusi, M., Grepioni, F. CrystEngComm 2005, 7, 276–278; https://doi.org/10.1039/b504459f.Search in Google Scholar

5. Stolar, T., Batzdorf, L., Lukin, S., Žilić, D., Motillo, C., Friščić, T., Emmerling, F., Halasz, I., Užarević, K. Inorg. Chem. 2017, 56, 6599–6608; https://doi.org/10.1021/acs.inorgchem.7b00707.Search in Google Scholar PubMed

6. Do, J.-L., Friščić, T. ACS Cent. Sci. 2017, 3, 13–19; https://doi.org/10.1021/acscentsci.6b00277.Search in Google Scholar PubMed PubMed Central

7. Katsenis, A. D., Puškarić, A., Štrukil, V., Mottillo, C., Julien, P. A., Užarević, K., Pham, M.-H., Do, T.-O., Kimber, S. A. J., Lazić, P., Magdysyuk, O., Dinnebier, R. E., Halasz, I., Friščić, T. Nat. Chem. 2015, 6, 6662; https://doi.org/10.1038/ncomms7662.Search in Google Scholar PubMed

8. Zurawski, A., Rybak, J. C., Meyer, L. V., Matthes, P. R., Stepanenko, V., Dannenbauer, N., Würthner, F., Müller-Buschbaum, K. Dalton Trans. 2012, 41, 4067–4078; https://doi.org/10.1039/c2dt12047j.Search in Google Scholar PubMed

9. Höller, C. J., Müller-Buschbaum, K. Inorg. Chem. 2008, 47, 10141–10149; https://doi.org/10.1021/ic800635u.Search in Google Scholar PubMed

10. Müller-Buschbaum, K. Z. Anorg. Allg. Chem. 2005, 631, 811–828; https://doi.org/10.1002/zaac.200400543.Search in Google Scholar

11. Den, T., Usov, P. M., Kim, J., Hashizume, D., Ohtsu, H., Kawano, M. Chem. Eur. J. 2019, 25, 11512–11520; https://doi.org/10.1002/chem.201902105.Search in Google Scholar PubMed

12. Petrukhina, M. A., Filatov, A. S., Sevryugina, Y., Andreini, K. W., Takamizawa, S. Organometallics 2006, 25, 2135–2142; https://doi.org/10.1021/om051100m.Search in Google Scholar

13. Kojima, T., Choi, W., Kawano, M. Chem. Commun. 2014, 50, 13793–13796; https://doi.org/10.1039/c4cc06342b.Search in Google Scholar PubMed

14. Boeckmann, J., Wriedt, M., Näther, C. Eur. J. Inorg. Chem. 2010, 1820–1828; https://doi.org/10.1002/ejic.200901163.Search in Google Scholar

15. Dembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A., Pike, R. D. Inorg. Chim. Acta 2010, 364, 102–114; https://doi.org/10.1016/j.ica.2010.07.073.Search in Google Scholar

16. Schönfeld, F., Wirthensohn, R., Schmitt, H. C., Constantinidis, P., Fischer, I., Müller-Buschbaum, K. Dalton Trans. 2014, 43, 15398–15406; https://doi.org/10.1039/c4dt01987c.Search in Google Scholar PubMed

17. Cappuccino, C., Farinella, F., Braga, D., Maini, L. Cryst. Growth Des. 2019, 19, 4395–4403; https://doi.org/10.1021/acs.cgd.9b00192.Search in Google Scholar

18. Wriedt, M., Näther, C. Chem. Commun. 2010, 46, 4707–4709; https://doi.org/10.1039/c0cc00064g.Search in Google Scholar PubMed

19. Näther, C., Bhosekar, G., Jess, I. Inorg. Chem. 2007, 46, 8079–8087; https://doi.org/10.1021/ic701079x.Search in Google Scholar PubMed

20. Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S., Näther, C. Eur. J. Inorg. Chem. 2015, 3236–3245; https://doi.org/10.1002/ejic.201500473.Search in Google Scholar

21. Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W., Näther, C. Inorg. Chem. 2020, 59, 5325–5338; https://doi.org/10.1021/acs.inorgchem.9b03357.Search in Google Scholar PubMed

22. Jochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W., Näther, C. Dalton Trans. 2020, 49, 15310–15322; https://doi.org/10.1039/d0dt03227a.Search in Google Scholar PubMed

23. Näther, C., Jeß, I. Eur. J. Inorg. Chem. 2004, 2868–2876; https://doi.org/10.1002/ejic.200300950.Search in Google Scholar

24. Werner, J., Rams, M., Tomkowicz, Z., Näther, C. Dalton Trans. 2014, 43, 17333–17342; https://doi.org/10.1039/c4dt02271h.Search in Google Scholar PubMed

25. Wöhlert, S., Ruschewitz, U., Näther, C. Cryst. Growth Des. 2012, 12, 2715–2718; https://doi.org/10.1021/cg201659v.Search in Google Scholar

26. Näther, C., Jess, I., Germann, L. S., Dinnebier, R. E., Braun, M., Terraschke, H. Eur. J. Inorg. Chem. 2017, 1245–1255; https://doi.org/10.1002/ejic.201700031.Search in Google Scholar

27. Desiraju, G. R., Sarma, J. A. Proc. Indian Acad. Sci. (Chem. Sci.) 1986, 96, 599–605; https://doi.org/10.1007/bf02936309.Search in Google Scholar

28. Desiraju, G. R. Organic solid state chemistry. In Studies in Organic Chemistry, Vol. 32; Elsevier: Amsterdam – Oxford – New York – Tokio, 1987.Search in Google Scholar

29. Desiraju, G. R. Crystal Engineering: The Design of Organic Solids; Elsevier: Amsterdam, 1989.Search in Google Scholar

30. Wöhlert, S., Jess, I., Englert, U., Näther, C. CrystEngComm 2013, 15, 5326–5336; https://doi.org/10.1039/c3ce40208h.Search in Google Scholar

31. Bhosekar, G., Jeß, I., Lehnert, N., Näther, C. Eur. J. Inorg. Chem. 2008, 605–611; https://doi.org/10.1002/ejic.200700934.Search in Google Scholar

32. Wiberg, N., Amelunxen, K., Lerner, H.-W., Nöth, H., Appel, A., Knizek, J., Polborn, K. Z. Anorg. Allg. Chem. 1997, 623, 1861–1870; https://doi.org/10.1002/zaac.19976231207.Search in Google Scholar

33. Li, J.-T., Guo, L.-R., Shen, Y., Zheng, L.-M. CrystEngComm 2009, 11, 1674–1678; https://doi.org/10.1039/b901332f.Search in Google Scholar

34. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

35. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

36. Coelho, A. A. J. Appl. Crystallogr. 2018, 51, 210–218; https://doi.org/10.1107/s1600576718000183.Search in Google Scholar

37. Coelho, A. A. J. Appl. Crystallogr. 2003, 36, 86–95; https://doi.org/10.1107/s0021889802019878.Search in Google Scholar

38. Cheary, R. W., Coelho, A. J. Appl. Crystallogr. 1992, 25, 109–121; https://doi.org/10.1107/s0021889891010804.Search in Google Scholar

39. Coelho, A. A. J. Appl. Crystallogr. 2000, 33, 899–908; https://doi.org/10.1107/s002188980000248x.Search in Google Scholar

40. Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65–71; https://doi.org/10.1107/s0021889869006558.Search in Google Scholar

41. Coelho, A. A. Acta Crystallogr. A 2007, 63, 400–406; https://doi.org/10.1107/s0108767307036112.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2022-0306).


Received: 2022-12-22
Accepted: 2023-01-05
Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0306/html?lang=en
Scroll to top button