Abstract
Reaction of zinc(II) chloride, bromide and iodide with 2-methylpyrazine (2-Mepyz) leads to the formation of coordination compounds with the composition ZnX2(2-Mepyz)2 (X = Cl; 1-Cl, Br; 1-Br and I; 1-I). In the compounds each Zn cation is tetrahedrally coordinated by two halide anions and two 2-methylpyrazine ligands forming discrete complexes. TG-DTA and temperature dependent PXRD measurements prove that upon heating compounds 1 transform into new compounds with the composition ZnX2(2-Mepyz) (2), that are subsequently converted into compounds with the composition (ZnX2)3(2-Mepyz) (3) upon further heating. It was also found that compounds 2 can be prepared directly in solution. For ZnI2(2-Mepyz) (2-I) crystals were obtained and characterized by single crystal X-ray diffraction, whereas the crystal structures of 2-Cl and 2-Br were determined ab initio from PXRD data. In these compounds the Zn cations are also tetrahedrally coordinated and linked into chains by bridging 2-methylpyrazine ligands. The (ZnX2)3(2-Mepyz) compounds can only be obtained by thermal decomposition, and the products are of poor crystallinity and extremely hygroscopic, which prevented structure determinations.
Funding source: State of Schleswig-Holstein
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the state of Schleswig-Holstein.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Braga, D., Curzi, M., Grepioni, F., Polito, M. Chem. Commun. 2005, 2915–2917; https://doi.org/10.1039/b503404c.Search in Google Scholar PubMed
2. James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friscic, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W., Waddell, D. C. Chem. Soc. Rev. 2012, 41, 413–447; https://doi.org/10.1039/c1cs15171a.Search in Google Scholar PubMed
3. Braga, D., Giaffreda, S. L., Grepioni, F., Pettersen, A., Maini, L., Curzi, M., Polito, M. Dalton Trans. 2006, 1249–1263; https://doi.org/10.1039/b516165g.Search in Google Scholar PubMed
4. Braga, D., Curzi, M., Lusi, M., Grepioni, F. CrystEngComm 2005, 7, 276–278; https://doi.org/10.1039/b504459f.Search in Google Scholar
5. Stolar, T., Batzdorf, L., Lukin, S., Žilić, D., Motillo, C., Friščić, T., Emmerling, F., Halasz, I., Užarević, K. Inorg. Chem. 2017, 56, 6599–6608; https://doi.org/10.1021/acs.inorgchem.7b00707.Search in Google Scholar PubMed
6. Do, J.-L., Friščić, T. ACS Cent. Sci. 2017, 3, 13–19; https://doi.org/10.1021/acscentsci.6b00277.Search in Google Scholar PubMed PubMed Central
7. Katsenis, A. D., Puškarić, A., Štrukil, V., Mottillo, C., Julien, P. A., Užarević, K., Pham, M.-H., Do, T.-O., Kimber, S. A. J., Lazić, P., Magdysyuk, O., Dinnebier, R. E., Halasz, I., Friščić, T. Nat. Chem. 2015, 6, 6662; https://doi.org/10.1038/ncomms7662.Search in Google Scholar PubMed
8. Zurawski, A., Rybak, J. C., Meyer, L. V., Matthes, P. R., Stepanenko, V., Dannenbauer, N., Würthner, F., Müller-Buschbaum, K. Dalton Trans. 2012, 41, 4067–4078; https://doi.org/10.1039/c2dt12047j.Search in Google Scholar PubMed
9. Höller, C. J., Müller-Buschbaum, K. Inorg. Chem. 2008, 47, 10141–10149; https://doi.org/10.1021/ic800635u.Search in Google Scholar PubMed
10. Müller-Buschbaum, K. Z. Anorg. Allg. Chem. 2005, 631, 811–828; https://doi.org/10.1002/zaac.200400543.Search in Google Scholar
11. Den, T., Usov, P. M., Kim, J., Hashizume, D., Ohtsu, H., Kawano, M. Chem. Eur. J. 2019, 25, 11512–11520; https://doi.org/10.1002/chem.201902105.Search in Google Scholar PubMed
12. Petrukhina, M. A., Filatov, A. S., Sevryugina, Y., Andreini, K. W., Takamizawa, S. Organometallics 2006, 25, 2135–2142; https://doi.org/10.1021/om051100m.Search in Google Scholar
13. Kojima, T., Choi, W., Kawano, M. Chem. Commun. 2014, 50, 13793–13796; https://doi.org/10.1039/c4cc06342b.Search in Google Scholar PubMed
14. Boeckmann, J., Wriedt, M., Näther, C. Eur. J. Inorg. Chem. 2010, 1820–1828; https://doi.org/10.1002/ejic.200901163.Search in Google Scholar
15. Dembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A., Pike, R. D. Inorg. Chim. Acta 2010, 364, 102–114; https://doi.org/10.1016/j.ica.2010.07.073.Search in Google Scholar
16. Schönfeld, F., Wirthensohn, R., Schmitt, H. C., Constantinidis, P., Fischer, I., Müller-Buschbaum, K. Dalton Trans. 2014, 43, 15398–15406; https://doi.org/10.1039/c4dt01987c.Search in Google Scholar PubMed
17. Cappuccino, C., Farinella, F., Braga, D., Maini, L. Cryst. Growth Des. 2019, 19, 4395–4403; https://doi.org/10.1021/acs.cgd.9b00192.Search in Google Scholar
18. Wriedt, M., Näther, C. Chem. Commun. 2010, 46, 4707–4709; https://doi.org/10.1039/c0cc00064g.Search in Google Scholar PubMed
19. Näther, C., Bhosekar, G., Jess, I. Inorg. Chem. 2007, 46, 8079–8087; https://doi.org/10.1021/ic701079x.Search in Google Scholar PubMed
20. Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S., Näther, C. Eur. J. Inorg. Chem. 2015, 3236–3245; https://doi.org/10.1002/ejic.201500473.Search in Google Scholar
21. Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W., Näther, C. Inorg. Chem. 2020, 59, 5325–5338; https://doi.org/10.1021/acs.inorgchem.9b03357.Search in Google Scholar PubMed
22. Jochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W., Näther, C. Dalton Trans. 2020, 49, 15310–15322; https://doi.org/10.1039/d0dt03227a.Search in Google Scholar PubMed
23. Näther, C., Jeß, I. Eur. J. Inorg. Chem. 2004, 2868–2876; https://doi.org/10.1002/ejic.200300950.Search in Google Scholar
24. Werner, J., Rams, M., Tomkowicz, Z., Näther, C. Dalton Trans. 2014, 43, 17333–17342; https://doi.org/10.1039/c4dt02271h.Search in Google Scholar PubMed
25. Wöhlert, S., Ruschewitz, U., Näther, C. Cryst. Growth Des. 2012, 12, 2715–2718; https://doi.org/10.1021/cg201659v.Search in Google Scholar
26. Näther, C., Jess, I., Germann, L. S., Dinnebier, R. E., Braun, M., Terraschke, H. Eur. J. Inorg. Chem. 2017, 1245–1255; https://doi.org/10.1002/ejic.201700031.Search in Google Scholar
27. Desiraju, G. R., Sarma, J. A. Proc. Indian Acad. Sci. (Chem. Sci.) 1986, 96, 599–605; https://doi.org/10.1007/bf02936309.Search in Google Scholar
28. Desiraju, G. R. Organic solid state chemistry. In Studies in Organic Chemistry, Vol. 32; Elsevier: Amsterdam – Oxford – New York – Tokio, 1987.Search in Google Scholar
29. Desiraju, G. R. Crystal Engineering: The Design of Organic Solids; Elsevier: Amsterdam, 1989.Search in Google Scholar
30. Wöhlert, S., Jess, I., Englert, U., Näther, C. CrystEngComm 2013, 15, 5326–5336; https://doi.org/10.1039/c3ce40208h.Search in Google Scholar
31. Bhosekar, G., Jeß, I., Lehnert, N., Näther, C. Eur. J. Inorg. Chem. 2008, 605–611; https://doi.org/10.1002/ejic.200700934.Search in Google Scholar
32. Wiberg, N., Amelunxen, K., Lerner, H.-W., Nöth, H., Appel, A., Knizek, J., Polborn, K. Z. Anorg. Allg. Chem. 1997, 623, 1861–1870; https://doi.org/10.1002/zaac.19976231207.Search in Google Scholar
33. Li, J.-T., Guo, L.-R., Shen, Y., Zheng, L.-M. CrystEngComm 2009, 11, 1674–1678; https://doi.org/10.1039/b901332f.Search in Google Scholar
34. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central
35. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar
36. Coelho, A. A. J. Appl. Crystallogr. 2018, 51, 210–218; https://doi.org/10.1107/s1600576718000183.Search in Google Scholar
37. Coelho, A. A. J. Appl. Crystallogr. 2003, 36, 86–95; https://doi.org/10.1107/s0021889802019878.Search in Google Scholar
38. Cheary, R. W., Coelho, A. J. Appl. Crystallogr. 1992, 25, 109–121; https://doi.org/10.1107/s0021889891010804.Search in Google Scholar
39. Coelho, A. A. J. Appl. Crystallogr. 2000, 33, 899–908; https://doi.org/10.1107/s002188980000248x.Search in Google Scholar
40. Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65–71; https://doi.org/10.1107/s0021889869006558.Search in Google Scholar
41. Coelho, A. A. Acta Crystallogr. A 2007, 63, 400–406; https://doi.org/10.1107/s0108767307036112.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2022-0306).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies