Startseite 1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“

  • Gerhard Maas ORCID logo EMAIL logo und Raphael Koch
Veröffentlicht/Copyright: 23. November 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The heterocyclic mesoionic compound (1,4-diphenyl-1H-1,2,4-triazol-4-ium-3-yl)(phenyl)amide („Nitron“) has recently been found to exist in a prototropic equilibrium with minor amounts of a nucleophilic heterocyclic carbene of the 1,2,4-triazolyl-5-ylidene type. Here we report that Nitron reacts with 1-trifluoromethyl-substituted prop-2-yne iminium salts by conjugate nucleophilic addition of the anionic PhN substituent in the mesoionic tautomer, whereas the nucleophilic triazolylidene form is involved in the reaction with 1-CF3-prop-2-yne imines. 3-(2,3-Dihydro-1H-benzo[c]azepin-5-yl)-1H-1,2,4-triazol-4-ium triflate salts were obtained in the former case and (Z)-9-arylidene-1,2,4,7-tetraazaspiro[4.4]nona-2,7-dienes in the latter.


Corresponding author: Gerhard Maas, Institute of Organic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany, E-mail:

Acknowledgments

We thank B. Müller (Institute of Inorganic Chemistry II) for the collection of the X-ray diffraction data and Dr. M. Wunderlin for obtaining the mass spectra.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Ulm University.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. The Merck Index: An Encyclopaedia of Chemicals, Drugs and Biologicals, 13th ed.; Merck & Co., Inc.: Whitehouse Station, New Jersey, 2001. entry 6646.Suche in Google Scholar

2. Busch, M. Ber. Dtsch. Chem. Ges. 1905, 38, 856–860; https://doi.org/10.1002/cber.190503801148.Suche in Google Scholar

3. Busch, M. Ber. Dtsch. Chem. Ges. 1905, 38, 861–866; https://doi.org/10.1002/cber.190503801149.Suche in Google Scholar

4. Schönberg, A. J. Chem. Soc. 1938, 824–825; https://doi.org/10.1039/jr9380000824.Suche in Google Scholar

5. Warren, F. L. J. Chem. Soc. 1938, 1100.Suche in Google Scholar

6. Baker, W., Ollis, W. D. Q. Rev. 1957, 11, 15–29; https://doi.org/10.1039/qr9571100015.Suche in Google Scholar

7. Olah, G. A. J. Inorg. Nucl. Chem. 1961, 16, 225–232; https://doi.org/10.1016/0022-1902(61)80494-6.Suche in Google Scholar

8. X-ray structure determination, Cannon, J. R., Raston, C. L., White, A. H. Aust. J. Chem. 1980, 33, 2237–2247; https://doi.org/10.1071/ch9802237.Suche in Google Scholar

9. Simas, A. M., Miller, J., de Athayade Filho, P. F. Can. J. Chem. 1998, 76, 869–872; https://doi.org/10.1139/v98-065.Suche in Google Scholar

10. Ramsden, C. A., Oziminski, W. P. Tetrahedron 2015, 71, 6846–6851; https://doi.org/10.1016/j.tet.2015.07.024.Suche in Google Scholar

11. Färber, C., Leibold, M., Bruhn, C., Maurer, M., Siemeling, U. Chem. Commun. 2012, 48, 227–229; https://doi.org/10.1039/c1cc16460k.Suche in Google Scholar PubMed

12. Hitzel, S., Färber, C., Bruhn, C., Siemeling, U. Organometallics 2014, 33, 425–428; https://doi.org/10.1021/om401058e.Suche in Google Scholar

13. Thie, C., Hitzel, S., Wallbaum, L., Bruhn, C., Siemeling, U. J. Organomet. Chem. 2016, 821, 112–121; https://doi.org/10.1016/j.jorganchem.2016.03.023.Suche in Google Scholar

14. Enders, D., Breuer, K., Raabe, G., Runsink, J., Teles, J. H., Melder, J.-P., Ebel, K., Brode, S. Angew. Chem. Int. Ed. Engl. 1995, 34, 1021–1023; https://doi.org/10.1002/anie.199510211.Suche in Google Scholar

15. Enders, D., Breuer, K., Runsink, J., Teles, J. H. Liebigs Ann. Chem. 1996, 2019–2028; https://doi.org/10.1002/jlac.199619961212.Suche in Google Scholar

16. Enders, D., Breuer, K., Kallfass, U., Balensiefer, T. Synthesis 2003, 1292–1295; https://doi.org/10.1055/s-2003-39409.Suche in Google Scholar

17. Reisser, M., Maas, G. J. Org. Chem. 2004, 69, 4913–4924; https://doi.org/10.1021/jo049586o.Suche in Google Scholar PubMed

18. Espenlaub, S., Gerster, H., Maas, G. ARKIVOC 2007, (iii), 114–131; https://doi.org/10.3998/ark.5550190.0008.311.Suche in Google Scholar

19. Schneider, T., Seitz, B., Schiwek, M., Maas, G. J. Fluor. Chem. 2020, 235, 109567; https://doi.org/10.1016/j.jfluchem.2020.109567.Suche in Google Scholar

20. Schneider, T., Keim, M., Seitz, B., Maas, G. Beilstein J. Org. Chem. 2020, 16, 2064–2072; https://doi.org/10.3762/bjoc.16.173.Suche in Google Scholar PubMed PubMed Central

21. Weil, M., Fürst, M. Acta Crystallogr. 2020, E76, 1003–1006; https://doi.org/10.1107/s2056989020006933.Suche in Google Scholar

22. Reinhard, R., Glaser, M., Neumann, R., Maas, G. J. Org. Chem. 1997, 62, 7744–7751; https://doi.org/10.1021/jo9710036.Suche in Google Scholar

23. Nedolya, N. A., Trofinov, B. A. Chem. Heterocycl. Compd. 2013, 49, 152–176. translated from: Khim. Geterosikl. Soedin. 2013, 49, 166‒190; https://doi.org/10.1007/s10593-013-1236-y.Suche in Google Scholar

24. Chen, Z., Zhu, J., Xie, H., Li, S., Wu, Y., Gong, Y. Org. Biomol. Chem. 2011, 9, 5682–5691; https://doi.org/10.1039/c1ob05371j.Suche in Google Scholar PubMed

25. Johnson, P. L., Renga, J. M., Galliford, C. V., Whiteker, G. T., Giampietro, N. C. Org. Lett. 2015, 17, 2905–2907; https://doi.org/10.1021/acs.orglett.5b01176.Suche in Google Scholar PubMed

26. Cao, J., Yang, X., Hua, Y., Deng, Y., Lai, G. Org. Lett. 2011, 13, 478–481; https://doi.org/10.1021/ol1028207.Suche in Google Scholar PubMed

27. Chen, J.-R., Hu, X.-Q., Lu, L.-Q., Xiao, W.-J. Chem. Rev. 2015, 115, 5301−5365; https://doi.org/10.1021/cr5006974.Suche in Google Scholar PubMed

28. Grant, J. A., Lu, Z., Tucker, D. E., Hockin, B. M., Yufit, D. S., Fox, M. A., Kataky, R., Chechik, V., O’Donoghue, A. C. Nat. Commun. 2017, 8, 15088; https://doi.org/10.1038/ncomms15088.Suche in Google Scholar PubMed PubMed Central

29. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

30. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Suche in Google Scholar

31. Farrugia, L. J. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0178).


Received: 2020-11-02
Accepted: 2020-11-11
Published Online: 2020-11-23
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0178/html
Button zum nach oben scrollen