Home Synthesis, crystal structure and photoluminescence of a binuclear rhenium(I) carbonyl complex incorporated in a framework of a distorted salophen ligand
Article
Licensed
Unlicensed Requires Authentication

Synthesis, crystal structure and photoluminescence of a binuclear rhenium(I) carbonyl complex incorporated in a framework of a distorted salophen ligand

  • Arnd Vogler and Michael Bodensteiner
Published/Copyright: November 24, 2020
Become an author with De Gruyter Brill

Abstract

Re(CO)5Cl reacts with salophenH2 to yield Re(I)2(salophenH)(CO)6Cl. A crystal structure determination has shown that this binuclear complex contains two Re(CO)3 fragments which are bridged by a chloride and a heavily constrained salophenH anion as ligands. Under ambient conditions in solution and in the solid state, the complex displays an orange emission which originates from the lowest-energy IL/MLCT triplet. In solution, this phosphorescence is completely quenched by oxygen.


Corresponding author: Michael Bodensteiner, Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053Regensburg, Germany, E-mail:
a

Arnd Vogler: Deceased May 16, 2020.


  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Evans, R. C., Douglas, P., Winscom, C. J. Coord. Chem. Rev. 2006, 250, 2093–2126; https://doi.org/10.1016/j.ccr.2006.02.007.Search in Google Scholar

2. Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes; Academic Press: London, 1992; p. 321.Search in Google Scholar

3. Vogler, A., Kunkely, H. Coord. Chem. Rev. 2000, 200–202, 991–1008; https://doi.org/10.1016/s0010-8545(99)00241-6.Search in Google Scholar

4. CrysAlis Pro Software System. Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2015.Search in Google Scholar

5 . Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8 https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

7. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

8. Czerwieniec, R., Kapturkiewicz, A., Anulewicz-Ostrowska, R., Nowacki, J. J. Chem. Soc., Dalton Trans. 2001, 2756–2761; https://doi.org/10.1039/b101357m.Search in Google Scholar

9. Stor, G. J., Hartl, F., van Outersterp, J. W. M., Stufkens, D. J. Organometallics 1995, 14, 1115–1131; https://doi.org/10.1021/om00003a013.Search in Google Scholar

10. Di Bella, S., Fragalà, I., Ledoux, I., Diaz-Garcia, M. A., Marks, T. J. J. Am. Chem. Soc. 1997, 119, 9550–9557; https://doi.org/10.1021/ja971349y.Search in Google Scholar

11. Kunkely, H., Vogler, A. Z. Naturforsch. 2002, 57b, 301–304; https://doi.org/10.1515/znb-2002-0307.Search in Google Scholar

12. Khan, T., Vaidya, S., Mhatre, D. S., Datta, A. J. Phys. Chem. B 2016, 120, 10319–10326; https://doi.org/10.1021/acs.jpcb.6b05854.Search in Google Scholar

13. Shen, Y.-Z., Pan, Y., Wang, L.-Y., Dong, G., Jin, X.-P., Huang, X.-Y., Hu, H. J. Organomet. Chem. 1999, 590, 242–247; https://doi.org/10.1016/s0022-328x(99)00466-0.Search in Google Scholar

Received: 2019-11-29
Accepted: 2020-01-31
Published Online: 2020-11-24
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2019-0211/html
Scroll to top button