Synthesis and crystal structures of two new lead(II) complexes with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy): subtle interplay of weak intermolecular interactions
Abstract
A dinuclear and a tetranuclear complex of lead(II) with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy), [Pb2(Cl-Ph-tpy)2(μ-I)2I2] (1) and [Pb4(Cl-Ph-tpy)4(μ-Br)4(μ-OH2)Br4]·2CH3OH (2), have been synthesized and characterized by elemental analysis, FT-IR and 1H NMR spectroscopy, and by single-crystal X-ray diffraction. In the binuclear structure of 1, the Pb atom has a hemidirected PbN3I3 environment with a Pb(μ-I)2Pb central unit. In the tetranuclear structure of 2, two crystallographically independent Pb(II) centres having hemidirected PbN3Br3 and PbN3OBr2 environments are connected to Pb(μ-Br)Pb(μ-Br)2(μ-OH2)Pb(μ-Br)Pb chains. The supramolecular features in 1 and 2 are supported through weak but directional C–H···Cl, C–H···I and C–H···Br, C–H···O, O–H···Br, and O···Br interactions and aromatic π-π stacking.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Chelucci, G., Thummel, R. P. Chem. Rev. 2002, 102, 3129–3170. https://doi.org/10.1021/cr0101914.10.1021/cr0101914Search in Google Scholar
2. Winter, A., Newkome, G. R., Schubert, U. S. Chem. Cat. Chem. 2011, 3, 1384–1406. https://doi.org/10.1002/cctc.201100118.10.1002/cctc.201100118Search in Google Scholar
3. Cargill Thompson, A. M., Coord, W. Chem. Rev. 1997, 160, 1−52. https://doi.org/10.1016/s0010-8545(96)01283-0.10.1016/S0010-8545(96)01283-0Search in Google Scholar
4. Heller, M., Schubert, U. S. Eur. J. Org. Chem. 2003, 2003, 947−961. https://doi.org/10.1002/ejoc.200390150.10.1002/ejoc.200390150Search in Google Scholar
5. Wild, A., Winter, A., Schlutter, F., Schubert, U. S. Chem. Soc. Rev. 2011, 40, 1459−1511. https://doi.org/10.1039/c0cs00074d.10.1039/C0CS00074DSearch in Google Scholar
6. Kotova, O., Daly, R., dos Santos, C. M. G., Kruger, P. E., Boland, J. J., Gunnlaugsson, T. Inorg. Chem. 2015, 54, 7735−7741. https://doi.org/10.1021/acs.inorgchem.5b00626.10.1021/acs.inorgchem.5b00626Search in Google Scholar PubMed
7. Čanović, P., Simović, A. R., Radisavljević, S., Bratsos, I., Demitri, N., Mitrović, M., Zelen, I., Bugarčić, Ž. D. J. Biol. Inorg. Chem. 2017, 22, 1007–1028. https://doi.org/10.1007/s00775-017-1479-7.10.1007/s00775-017-1479-7Search in Google Scholar PubMed
8. Zhang, G., Zeng, H., Wu, J., Yin, Z., Zheng, S., Fettinger, J. C. Angew. Chem. Int. Ed. 2016, 55, 14369–14372. https://doi.org/10.1002/anie.201607579.10.1002/anie.201607579Search in Google Scholar PubMed
9. Maroń, A., Szlapa, A., Czerwińska, K., Małecki, J. G., Krompiec, S., Machura, B. Cryst. Eng. Comm. 2016, 18, 5528–5536. https://doi.org/10.1039/C6CE00890A.10.1039/C6CE00890ASearch in Google Scholar
10. McPherson, J. N., Das, B., Colbran, S. B. Coord. Chem. Rev. 2018, 375, 285–332. https://doi.org/10.1016/j.ccr.2018.01.012.10.1016/j.ccr.2018.01.012Search in Google Scholar
11. Wei, C., He, Y., Shi, X., Song, Z. Coord. Chem. Rev. 2019, 385, 1–19. https://doi.org/10.1016/j.ccr.2019.01.005.10.1016/j.ccr.2019.01.005Search in Google Scholar PubMed PubMed Central
12. Mills, I. N., Porras, J. A., Bernhard, S. Acc. Chem. Res. 2018, 51, 352–364. https://doi.org/10.1021/acs.accounts.7b00375.10.1021/acs.accounts.7b00375Search in Google Scholar PubMed
13. Abdi, K., Hadadzadeh, H., Weil, M., Salimi, M. Polyhedron 2012, 31, 638–648. https://doi.org/10.1016/j.poly.2011.10.028.10.1016/j.poly.2011.10.028Search in Google Scholar
14. Ma, Z., Cao, Y., Li, Q., Guedes da Silva, M. F. C., Fraústo da Silva, J. J. R., Pombeiro, A. J. L. J. Inorg. Biochem. 2010, 104, 704–711. https://doi.org/10.1016/j.jinorgbio.2010.03.002.10.1016/j.jinorgbio.2010.03.002Search in Google Scholar PubMed
15. Hussain, A., Gadadhar, S., Goswami, T. K., Karande, A. A., Chakravarty, A. R. Eur. J. Med. Chem. 2012, 50, 319–331. https://doi.org/10.1016/j.ejmech.2012.02.011.10.1016/j.ejmech.2012.02.011Search in Google Scholar PubMed
16. Ma, Z., Lu, W., Liang, B., Pombeiro, A. J. L. New J. Chem. 2013, 37, 1529–1537. https://doi.org/10.1039/c3nj41176a.10.1039/c3nj41176aSearch in Google Scholar
17. Dobrova, A., Platzer, S., Bacher, F., Milunovic, M. N. M., Dobrov, A., Spengler, G., Enyedy, É. A., Novitchi, G., Arion, V. B. Dalton Trans. 2016, 45, 13427–13439. https://doi.org/10.1039/c6dt02784a.10.1039/C6DT02784ASearch in Google Scholar PubMed
18. Uma, V., Kanthimathi, M., Weyhermüller, T., Nair, B. U. J. Inorg. Biochem. 2005, 99, 2299–2307. https://doi.org/10.1016/j.jinorgbio.2005.08.011.10.1016/j.jinorgbio.2005.08.011Search in Google Scholar PubMed
19. Larsson, A. C., Ivanov, A. V., Pike, K. J., Forsling, W., Antzutkin, O. N. J. Magn. Reson. 2005, 177, 56–66. https://doi.org/10.1016/j.jmr.2005.07.007.10.1016/j.jmr.2005.07.007Search in Google Scholar PubMed
20. Marandi, F., Mottaghi, M., Meyer, G., Pantenburg, I. Z. Anorg. Allg. Chem. 2009, 635, 165–170. https://doi.org/10.1002/zaac.200800358.10.1002/zaac.200800358Search in Google Scholar
21. Marandi, F., Ghorbanloo, M., Soudi, A. A. J. Coord. Chem. 2007, 60, 1557–1565. https://doi.org/10.1080/00958970601086669.10.1080/00958970601086669Search in Google Scholar
22. Marandi, F., Shahbakhsh, N. Z. Anorg. Allg. Chem. 2007, 633, 1137–1139. https://doi.org/10.1002/zaac.200700113.10.1002/zaac.200700113Search in Google Scholar
23. Marandi, F., Moeini, K., Mardani, Z., Krautscheid, H. Acta Crystallogr. 2019, C75, 1023–1030. https://doi.org/10.1107/s2053229619008301.10.1107/S2053229619008301Search in Google Scholar PubMed
24. Taheri, S., Marandi, F., Fun, H. K., Kia, R. Z. Anorg. Allg. Chem. 2009, 635, 1352–1354. https://doi.org/10.1002/zaac.200900043.10.1002/zaac.200900043Search in Google Scholar
25. Marandi, F., Krautscheid, H. Z. Naturforscher 2009, 64b, 1027–1031. https://doi.org/10.1515/znb-2009-0906.10.1515/znb-2009-0906Search in Google Scholar
26. Mondal, S., Mukherjee, M., Chakraborty, S., Mukherjee, A. K. Cryst. Growth Des. 2006, 6, 940–945. https://doi.org/10.1021/cg050497u.10.1021/cg050497uSearch in Google Scholar
27. Gaballa, A. S., Asker, M. S ., Barakat, A. S., Teleb, S. M. Spectrochim. Acta, Part A 2007, 67, 114–121. https://doi.org/10.1016/j.saa.2006.06.031.10.1016/j.saa.2006.06.031Search in Google Scholar PubMed
28. Marandi, F., Saghatforoush, L., Pantenburg, I., Meyer, G. J. Mol. Struct. 2009, 938, 277–282. https://doi.org/10.1016/j.molstruc.2009.09.042.10.1016/j.molstruc.2009.09.042Search in Google Scholar
29. Saghatforoush, L., Marandi, F., Pantenburg, I., Meyer, G. Z. Anorg. Allg. Chem. 2009, 635, 1523–1526. https://doi.org/10.1002/zaac.200900224.10.1002/zaac.200900224Search in Google Scholar
30. Marandi, F., Pantenburg, I., Meyer, G. Z. Anorg. Allg. Chem. 2009, 635, 2558–2562. https://doi.org/10.1002/zaac.200800358.10.1002/zaac.200800358Search in Google Scholar
31. Saghatforoush, L., Sahin, E., Babaei, S., Bakhtiari, A., Nasimian, A., Çelik, Ö., Zabihollahi, Z. J. Coord. Chem. 2014, 67, 1563–1477. https://doi.org/10.1080/00958972.2014.909930.10.1080/00958972.2014.909930Search in Google Scholar
32. Marandi, F., Garousi, E., Fun, H. K. J. Mol. Struct. 2013, 1049, 205–211. https://doi.org/10.1016/j.molstruc.2013.06.019.10.1016/j.molstruc.2013.06.019Search in Google Scholar
33. Hancock, R. D., Shaikjee, M. S., Dobson, S. M., Boeyens, J. C. A. Inorg. Chim. Acta. 1998, 154, 229–238.10.1016/S0020-1693(00)90141-5Search in Google Scholar
34. Krautscheid, H., Vielsack, F. Z. Anorg. Allg. Chem. 1999, 625, 562–626. https://doi.org/10.1002/(sici)1521-3749(199904)625:4<562::aid-zaac562>3.0.co;2-z.10.1002/(SICI)1521-3749(199904)625:4<562::AID-ZAAC562>3.0.CO;2-ZSearch in Google Scholar
35. Bowmaker, G., Harrowfield, J. M., Miyamae, H., Shand, T. M., Skelton, B. W., Soudi, A. A., White, A. H. Aust. J. Chem. 1996, 49, 1089–1097. https://doi.org/10.1071/ch9961089.10.1071/CH9961089Search in Google Scholar
36. Marandi, F., Moeini, K., Mardani, Z., Krautscheid, H. J. Coord. Chem. 2019, 72, 1876–1889. https://doi.org/10.1080/00958972.2019.1619707.10.1080/00958972.2019.1619707Search in Google Scholar
37. Martínez Casado, F. J., Cañadillas-Delgado, L., Cucinotta, F., Guerrero-Martínez, A., Riesco, M. R., Marchese, L., Rodríguez Chedag, J. A. Cryst. Eng. Comm. 2012, 14, 2660–2668. https://doi.org/10.1039/c2ce06546k.10.1039/c2ce06546kSearch in Google Scholar
38. Marandi, F. Chin. J. Struct. Chem. 2014, 33, 1184–1190.Search in Google Scholar
39. Marandi, F., Moeini, K., Ghasemzadeh, S., Mardani, Z., Quah, C. K., Loh, W.-S. J. Mol. Struct. 2017, 1149, 92–98. https://doi.org/10.1016/j.molstruc.2017.06.039.10.1016/j.molstruc.2017.06.039Search in Google Scholar
40. Marandi, F., Moeini, K., Alizadeh, F., Mardani, Z., Quah, C. K., Loh, W.-S., Woollins, J. D. Inorg. Chim. Acta. 2018, 482, 717–725. https://doi.org/10.1016/j.ica.2018.07.014.10.1016/j.ica.2018.07.014Search in Google Scholar
41. Marandi, F., Amoopour, F., Pantenburg, I., Meyer, G. J. Mol. Struct. 2010, 973, 124−129. https://doi.org/10.1016/j.molstruc.2010.03.056.10.1016/j.molstruc.2010.03.056Search in Google Scholar
42. X-Area. Crystal Optimization for Numerical Absorption Correction; STOE & Cie GmbH: Darmstadt (Germany), 2019.version 1.88.Search in Google Scholar
43. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/S2053273314026370.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central
44. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565. https://doi.org/10.1107/s0021889897003117.10.1107/S0021889897003117Search in Google Scholar
45. Johnson, C. K., Burnett, M. N. Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Report ORNL-6895. Ortep-III; Oak Ridge National Laboratory: Oak Ridge, TN (USA), 1996.version 1.0.2.10.2172/369685Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study
- A study of antituberculosis activities and crystal structures of (E)-2-[2-(arylidene)hydrazinyl]pyrimidine and (E)-N1-(arylidene)pyrimidine-2-carbohydrazide derivatives
- Pt3Ni/C and Pt3Co/C cathodes as electrocatalysts for use in oxygen sensors and proton exchange membrane fuel cells
- Selective cyclization modes of methyl 3′-heteroarylamino-2′-(2,5-dichlorothiophene-3-carbonyl)acrylates. Synthesis of model (thienyl)pyrazolo- and triazolo[1,5-α]pyrimidines
- Synthesis and crystal structures of two new lead(II) complexes with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy): subtle interplay of weak intermolecular interactions
- Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]
- Synthesis, crystal structure and photoluminescence of a binuclear rhenium(I) carbonyl complex incorporated in a framework of a distorted salophen ligand
- 1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“
- Note
- YIrIn with ZrNiAl-type structure
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study
- A study of antituberculosis activities and crystal structures of (E)-2-[2-(arylidene)hydrazinyl]pyrimidine and (E)-N1-(arylidene)pyrimidine-2-carbohydrazide derivatives
- Pt3Ni/C and Pt3Co/C cathodes as electrocatalysts for use in oxygen sensors and proton exchange membrane fuel cells
- Selective cyclization modes of methyl 3′-heteroarylamino-2′-(2,5-dichlorothiophene-3-carbonyl)acrylates. Synthesis of model (thienyl)pyrazolo- and triazolo[1,5-α]pyrimidines
- Synthesis and crystal structures of two new lead(II) complexes with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy): subtle interplay of weak intermolecular interactions
- Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]
- Synthesis, crystal structure and photoluminescence of a binuclear rhenium(I) carbonyl complex incorporated in a framework of a distorted salophen ligand
- 1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“
- Note
- YIrIn with ZrNiAl-type structure