Home Synthesis and crystal structures of two new lead(II) complexes with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy): subtle interplay of weak intermolecular interactions
Article
Licensed
Unlicensed Requires Authentication

Synthesis and crystal structures of two new lead(II) complexes with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy): subtle interplay of weak intermolecular interactions

  • Farzin Marandi EMAIL logo and Harald Krautscheid
Published/Copyright: November 9, 2020
Become an author with De Gruyter Brill

Abstract

A dinuclear and a tetranuclear complex of lead(II) with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy), [Pb2(Cl-Ph-tpy)2(μ-I)2I2] (1) and [Pb4(Cl-Ph-tpy)4(μ-Br)4(μ-OH2)Br4]·2CH3OH (2), have been synthesized and characterized by elemental analysis, FT-IR and 1H NMR spectroscopy, and by single-crystal X-ray diffraction. In the binuclear structure of 1, the Pb atom has a hemidirected PbN3I3 environment with a Pb(μ-I)2Pb central unit. In the tetranuclear structure of 2, two crystallographically independent Pb(II) centres having hemidirected PbN3Br3 and PbN3OBr2 environments are connected to Pb(μ-Br)Pb(μ-Br)2(μ-OH2)Pb(μ-Br)Pb chains. The supramolecular features in 1 and 2 are supported through weak but directional C–H···Cl, C–H···I and C–H···Br, C–H···O, O–H···Br, and O···Br interactions and aromatic π-π stacking.


Corresponding author: Farzin Marandi, Inorganic Chemistry Department, Faculty of Chemistry, Urmia University,57561-51818, Urmia, I. R. Iran, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chelucci, G., Thummel, R. P. Chem. Rev. 2002, 102, 3129–3170. https://doi.org/10.1021/cr0101914.10.1021/cr0101914Search in Google Scholar

2. Winter, A., Newkome, G. R., Schubert, U. S. Chem. Cat. Chem. 2011, 3, 1384–1406. https://doi.org/10.1002/cctc.201100118.10.1002/cctc.201100118Search in Google Scholar

3. Cargill Thompson, A. M., Coord, W. Chem. Rev. 1997, 160, 1−52. https://doi.org/10.1016/s0010-8545(96)01283-0.10.1016/S0010-8545(96)01283-0Search in Google Scholar

4. Heller, M., Schubert, U. S. Eur. J. Org. Chem. 2003, 2003, 947−961. https://doi.org/10.1002/ejoc.200390150.10.1002/ejoc.200390150Search in Google Scholar

5. Wild, A., Winter, A., Schlutter, F., Schubert, U. S. Chem. Soc. Rev. 2011, 40, 1459−1511. https://doi.org/10.1039/c0cs00074d.10.1039/C0CS00074DSearch in Google Scholar

6. Kotova, O., Daly, R., dos Santos, C. M. G., Kruger, P. E., Boland, J. J., Gunnlaugsson, T. Inorg. Chem. 2015, 54, 7735−7741. https://doi.org/10.1021/acs.inorgchem.5b00626.10.1021/acs.inorgchem.5b00626Search in Google Scholar PubMed

7. Čanović, P., Simović, A. R., Radisavljević, S., Bratsos, I., Demitri, N., Mitrović, M., Zelen, I., Bugarčić, Ž. D. J. Biol. Inorg. Chem. 2017, 22, 1007–1028. https://doi.org/10.1007/s00775-017-1479-7.10.1007/s00775-017-1479-7Search in Google Scholar PubMed

8. Zhang, G., Zeng, H., Wu, J., Yin, Z., Zheng, S., Fettinger, J. C. Angew. Chem. Int. Ed. 2016, 55, 14369–14372. https://doi.org/10.1002/anie.201607579.10.1002/anie.201607579Search in Google Scholar PubMed

9. Maroń, A., Szlapa, A., Czerwińska, K., Małecki, J. G., Krompiec, S., Machura, B. Cryst. Eng. Comm. 2016, 18, 5528–5536. https://doi.org/10.1039/C6CE00890A.10.1039/C6CE00890ASearch in Google Scholar

10. McPherson, J. N., Das, B., Colbran, S. B. Coord. Chem. Rev. 2018, 375, 285–332. https://doi.org/10.1016/j.ccr.2018.01.012.10.1016/j.ccr.2018.01.012Search in Google Scholar

11. Wei, C., He, Y., Shi, X., Song, Z. Coord. Chem. Rev. 2019, 385, 1–19. https://doi.org/10.1016/j.ccr.2019.01.005.10.1016/j.ccr.2019.01.005Search in Google Scholar PubMed PubMed Central

12. Mills, I. N., Porras, J. A., Bernhard, S. Acc. Chem. Res. 2018, 51, 352–364. https://doi.org/10.1021/acs.accounts.7b00375.10.1021/acs.accounts.7b00375Search in Google Scholar PubMed

13. Abdi, K., Hadadzadeh, H., Weil, M., Salimi, M. Polyhedron 2012, 31, 638–648. https://doi.org/10.1016/j.poly.2011.10.028.10.1016/j.poly.2011.10.028Search in Google Scholar

14. Ma, Z., Cao, Y., Li, Q., Guedes da Silva, M. F. C., Fraústo da Silva, J. J. R., Pombeiro, A. J. L. J. Inorg. Biochem. 2010, 104, 704–711. https://doi.org/10.1016/j.jinorgbio.2010.03.002.10.1016/j.jinorgbio.2010.03.002Search in Google Scholar PubMed

15. Hussain, A., Gadadhar, S., Goswami, T. K., Karande, A. A., Chakravarty, A. R. Eur. J. Med. Chem. 2012, 50, 319–331. https://doi.org/10.1016/j.ejmech.2012.02.011.10.1016/j.ejmech.2012.02.011Search in Google Scholar PubMed

16. Ma, Z., Lu, W., Liang, B., Pombeiro, A. J. L. New J. Chem. 2013, 37, 1529–1537. https://doi.org/10.1039/c3nj41176a.10.1039/c3nj41176aSearch in Google Scholar

17. Dobrova, A., Platzer, S., Bacher, F., Milunovic, M. N. M., Dobrov, A., Spengler, G., Enyedy, É. A., Novitchi, G., Arion, V. B. Dalton Trans. 2016, 45, 13427–13439. https://doi.org/10.1039/c6dt02784a.10.1039/C6DT02784ASearch in Google Scholar PubMed

18. Uma, V., Kanthimathi, M., Weyhermüller, T., Nair, B. U. J. Inorg. Biochem. 2005, 99, 2299–2307. https://doi.org/10.1016/j.jinorgbio.2005.08.011.10.1016/j.jinorgbio.2005.08.011Search in Google Scholar PubMed

19. Larsson, A. C., Ivanov, A. V., Pike, K. J., Forsling, W., Antzutkin, O. N. J. Magn. Reson. 2005, 177, 56–66. https://doi.org/10.1016/j.jmr.2005.07.007.10.1016/j.jmr.2005.07.007Search in Google Scholar PubMed

20. Marandi, F., Mottaghi, M., Meyer, G., Pantenburg, I. Z. Anorg. Allg. Chem. 2009, 635, 165–170. https://doi.org/10.1002/zaac.200800358.10.1002/zaac.200800358Search in Google Scholar

21. Marandi, F., Ghorbanloo, M., Soudi, A. A. J. Coord. Chem. 2007, 60, 1557–1565. https://doi.org/10.1080/00958970601086669.10.1080/00958970601086669Search in Google Scholar

22. Marandi, F., Shahbakhsh, N. Z. Anorg. Allg. Chem. 2007, 633, 1137–1139. https://doi.org/10.1002/zaac.200700113.10.1002/zaac.200700113Search in Google Scholar

23. Marandi, F., Moeini, K., Mardani, Z., Krautscheid, H. Acta Crystallogr. 2019, C75, 1023–1030. https://doi.org/10.1107/s2053229619008301.10.1107/S2053229619008301Search in Google Scholar PubMed

24. Taheri, S., Marandi, F., Fun, H. K., Kia, R. Z. Anorg. Allg. Chem. 2009, 635, 1352–1354. https://doi.org/10.1002/zaac.200900043.10.1002/zaac.200900043Search in Google Scholar

25. Marandi, F., Krautscheid, H. Z. Naturforscher 2009, 64b, 1027–1031. https://doi.org/10.1515/znb-2009-0906.10.1515/znb-2009-0906Search in Google Scholar

26. Mondal, S., Mukherjee, M., Chakraborty, S., Mukherjee, A. K. Cryst. Growth Des. 2006, 6, 940–945. https://doi.org/10.1021/cg050497u.10.1021/cg050497uSearch in Google Scholar

27. Gaballa, A. S., Asker, M. S ., Barakat, A. S., Teleb, S. M. Spectrochim. Acta, Part A 2007, 67, 114–121. https://doi.org/10.1016/j.saa.2006.06.031.10.1016/j.saa.2006.06.031Search in Google Scholar PubMed

28. Marandi, F., Saghatforoush, L., Pantenburg, I., Meyer, G. J. Mol. Struct. 2009, 938, 277–282. https://doi.org/10.1016/j.molstruc.2009.09.042.10.1016/j.molstruc.2009.09.042Search in Google Scholar

29. Saghatforoush, L., Marandi, F., Pantenburg, I., Meyer, G. Z. Anorg. Allg. Chem. 2009, 635, 1523–1526. https://doi.org/10.1002/zaac.200900224.10.1002/zaac.200900224Search in Google Scholar

30. Marandi, F., Pantenburg, I., Meyer, G. Z. Anorg. Allg. Chem. 2009, 635, 2558–2562. https://doi.org/10.1002/zaac.200800358.10.1002/zaac.200800358Search in Google Scholar

31. Saghatforoush, L., Sahin, E., Babaei, S., Bakhtiari, A., Nasimian, A., Çelik, Ö., Zabihollahi, Z. J. Coord. Chem. 2014, 67, 1563–1477. https://doi.org/10.1080/00958972.2014.909930.10.1080/00958972.2014.909930Search in Google Scholar

32. Marandi, F., Garousi, E., Fun, H. K. J. Mol. Struct. 2013, 1049, 205–211. https://doi.org/10.1016/j.molstruc.2013.06.019.10.1016/j.molstruc.2013.06.019Search in Google Scholar

33. Hancock, R. D., Shaikjee, M. S., Dobson, S. M., Boeyens, J. C. A. Inorg. Chim. Acta. 1998, 154, 229–238.10.1016/S0020-1693(00)90141-5Search in Google Scholar

34. Krautscheid, H., Vielsack, F. Z. Anorg. Allg. Chem. 1999, 625, 562–626. https://doi.org/10.1002/(sici)1521-3749(199904)625:4<562::aid-zaac562>3.0.co;2-z.10.1002/(SICI)1521-3749(199904)625:4<562::AID-ZAAC562>3.0.CO;2-ZSearch in Google Scholar

35. Bowmaker, G., Harrowfield, J. M., Miyamae, H., Shand, T. M., Skelton, B. W., Soudi, A. A., White, A. H. Aust. J. Chem. 1996, 49, 1089–1097. https://doi.org/10.1071/ch9961089.10.1071/CH9961089Search in Google Scholar

36. Marandi, F., Moeini, K., Mardani, Z., Krautscheid, H. J. Coord. Chem. 2019, 72, 1876–1889. https://doi.org/10.1080/00958972.2019.1619707.10.1080/00958972.2019.1619707Search in Google Scholar

37. Martínez Casado, F. J., Cañadillas-Delgado, L., Cucinotta, F., Guerrero-Martínez, A., Riesco, M. R., Marchese, L., Rodríguez Chedag, J. A. Cryst. Eng. Comm. 2012, 14, 2660–2668. https://doi.org/10.1039/c2ce06546k.10.1039/c2ce06546kSearch in Google Scholar

38. Marandi, F. Chin. J. Struct. Chem. 2014, 33, 1184–1190.Search in Google Scholar

39. Marandi, F., Moeini, K., Ghasemzadeh, S., Mardani, Z., Quah, C. K., Loh, W.-S. J. Mol. Struct. 2017, 1149, 92–98. https://doi.org/10.1016/j.molstruc.2017.06.039.10.1016/j.molstruc.2017.06.039Search in Google Scholar

40. Marandi, F., Moeini, K., Alizadeh, F., Mardani, Z., Quah, C. K., Loh, W.-S., Woollins, J. D. Inorg. Chim. Acta. 2018, 482, 717–725. https://doi.org/10.1016/j.ica.2018.07.014.10.1016/j.ica.2018.07.014Search in Google Scholar

41. Marandi, F., Amoopour, F., Pantenburg, I., Meyer, G. J. Mol. Struct. 2010, 973, 124−129. https://doi.org/10.1016/j.molstruc.2010.03.056.10.1016/j.molstruc.2010.03.056Search in Google Scholar

42. X-Area. Crystal Optimization for Numerical Absorption Correction; STOE & Cie GmbH: Darmstadt (Germany), 2019.version 1.88.Search in Google Scholar

43. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/S2053273314026370.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

44. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565. https://doi.org/10.1107/s0021889897003117.10.1107/S0021889897003117Search in Google Scholar

45. Johnson, C. K., Burnett, M. N. Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Report ORNL-6895. Ortep-III; Oak Ridge National Laboratory: Oak Ridge, TN (USA), 1996.version 1.0.2.10.2172/369685Search in Google Scholar

Received: 2020-07-13
Accepted: 2020-10-10
Published Online: 2020-11-09
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0129/html
Scroll to top button