Startseite Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]

  • Kevin U. Bareiß , Alexandra Friedly und Thomas Schleid EMAIL logo
Veröffentlicht/Copyright: 19. November 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The cesium dodecahydro-monocarba-closo-dodecaborate Cs[CB11H12] crystallizes with an unexpected trigonal crystal structure having the lattice parameters a = 2094.73(3) and c = 1324.56(2) pm (c/a = 0.632) for Z = 18. The non-centrosymmetric space group R3 allows an ordering of the unsymmetric [CB11H12] anions in a way that the least electronegative vertices of the pseudo-icosahedral cages avoid close proximity to the Cs+ cations. Hence there are channels at [0 0 z], [1/32/3z] and [2/31/3z], into which the C–H bonds of the [CB11H12] units are pointing. There are two crystallographically independent Cs+ cations and [CB11H12] anions present with unsurprising interatomic distances (d(C–B) = 166–181 pm, d(B–B) = 170–183 pm, d(B–H) = d(C–H) ≈ 110 pm) for the latter. Both Cs+ cations have contact to 18 hydrogen atoms (d(Cs–H) = 296–427 pm) stemming from six unevenly face-grafting [CB11H12] anions, where only B–H bonds are involved. This fact is nicely reflected by IR and Raman spectroscopy. According to a 6/6 motif of the ions with highly distorted mutual octahedral coordination spheres of their centres of gravity, the crystal structure of Cs[CB11H12] follows roughly a rock salt-like arrangement. This becomes even more evident, when order-disorder transitions starting at T = 60 °C lead to more highly symmetrical structures with orientationally disordered [CB11H12] anions.


Widmung: Professor Todd B. Marder zum 65. Geburtstag gewidmet.



Corresponding author: Thomas Schleid, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, E-mail:

Danksagung

Wir danken Herrn Dr. Falk Lissner (AOR) für die Einkristallmessungen, Herrn Christof Schneck (CTA) für die DSC-Messungen sowie dem Land Baden-Württemberg (Stuttgart) und der Deutschen Forschungsgemeinschaft (Bonn) im Rahmen der Förderung des Graduiertenkollegs „Moderne Methoden der magnetischen Resonanz in der Materialforschung“ an der Universität Stuttgart für die großzügige Unterstützung mit Sachmitteln.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Wade, K. Adv. Inorg. Radiochem. 1976, 18, 1–66; https://doi.org/10.2307/25604954.Suche in Google Scholar

2. Aihara, J. J. Am. Chem. Soc. 1978, 100, 3339–3342; https://doi.org/10.1021/ja00479a015.Suche in Google Scholar

3. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2003, 629, 1390–1402; https://doi.org/10.1002/zaac.200300098.Suche in Google Scholar

4. Tiritiris, I., Schleid, Th., Müller, K., Preetz, W. Z. Anorg. Allg. Chem. 2000, 626, 323–325; https://doi.org/10.1002/(sici)1521-3749(200002)626:2<323::aid-zaac323>3.0.co;2-q.10.1002/(SICI)1521-3749(200002)626:2<323::AID-ZAAC323>3.0.CO;2-QSuche in Google Scholar

5. Wunderlich, J. A., Lipscomb, W. N. J. Am. Chem. Soc. 1960, 82, 4427–4428; https://doi.org/10.1021/ja01501a076.Suche in Google Scholar

6. Dimitrievska, M., Wu, H., Stavila, V., Babanova, O. A., Skoryunov, R. V., Soloninin, A. V., Zhou, W., Trump, B. A., Andersson, M. S., Skripov, A. V., Udovic, T. J. J. Phys. Chem. C 2020, 124, 17992–18002; https://doi.org/10.1021/acs.jpcc.0c05038.Suche in Google Scholar

7. Černý, R., Brighi, M., Dimitrievska, M., Udovic, T. J. 2020, in preparation (as quoted in ref. [14]).Suche in Google Scholar

8. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2002, 628, 1411–1418; https://doi.org/10.1002/1521-3749(200206)628:6<1411::aid-zaac1411>3.0.co;2-x.10.1002/1521-3749(200206)628:6<1411::AID-ZAAC1411>3.0.CO;2-XSuche in Google Scholar

9. Yousufuddin, M., Her, J.-H., Zhou, W., Jalisatgi, S. S., Udovic, T. J. Inorg. Chim. Acta 2009, 362, 3155–3158; https://doi.org/10.1016/j.ica.2009.02.020.Suche in Google Scholar

10. Ponomarev, V. I., Solntsev, K. A., Kuznetsov, N. T. Koord. Khim. 1991, 22, 21–28.Suche in Google Scholar

11. Her, J.-H., Yousufuddin, M., Zhou, W., Jalisatgi, S. S., Kulleck, J. G., Zan, J. A., Hwang, S.-J., Bowman, R. C., Udovic, T. J. Inorg. Chem. 2008, 47, 9757–9759; https://doi.org/10.1021/ic801345h.Suche in Google Scholar

12. Her, J.-H., Zhou, W., Stavila, V., Brown, C. M., Udovic, T. J. J. Phys. Chem. C 2009, 113, 11187–11189; https://doi.org/10.1021/jp904980m.Suche in Google Scholar

13. Tang, W. S., Unemoto, A., Zhou, W., Stavila, V., Matsuo, M., Wu, H., Orimo, S.-I., Udovic, T. J. Energy Environ. Sci. 2015, 8, 3637–3645; https://doi.org/10.1039/c5ee02941d.Suche in Google Scholar

14. Černý, R., Brighi, M., Murgia, F. Chemistry 2020, 2, 805–826.10.3390/chemistry2040053Suche in Google Scholar

15. Holleman, A. F., Wiberg, N., Wiberg, E. Anorganische Chemie; Band 1: Grundlagen und Hauptgruppenelemente, 103. Auflage, De Gruyter: Berlin, Boston, 2017.Suche in Google Scholar

16. Kononova, E. G., Bukalov, S. S., Leites, L. A., Lyssenko, K. A., Ol’shevskaya, V. A. Russ. Chem. Bull. 2003, 52, 85–92; https://doi.org/10.1023/a:1022436029305.10.1023/A:1022436029305Suche in Google Scholar

17. Hesse, M., Meier, H., Zeeh, B. Spektroskopische Methoden in der Organischen Chemie; 7. Auflage, Thieme: Stuttgart, 2005.10.1055/b-002-46985Suche in Google Scholar

18. X-Shape (Version 1.06). Crystal Optimization for Numerical Absorption Correction; STOE & Cie GmbH: Darmstadt (Germany), 1999.Suche in Google Scholar

19. Sheldrick, G. M. Acta Crystallogr. 2008, 64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

20. Sheldrick, G. M. Acta Crystallogr. 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

21. Brandenburg, K., Putz, H. Crystal Impact GbR Crystal and Molecular Structure Visualization, Diamond (Version 4.4.1): Bonn (Germany), 2017. See also https://www.crystalimpact.com/news/20170911a.htm.Suche in Google Scholar

22. STOE WinXPOW (Version 1.04); STOE & Cie GmbH: Darmstadt (Germany), 1999.Suche in Google Scholar

23. Proteus. Software for Thermal Analysis; Netzsch-Gerätebau GmbH. Selb (Germany), 2013. https://www.netzsch-thermal-analysis.com/en/products-solutions/software/proteus/ (accessed Oct 28, 2020).Suche in Google Scholar

Received: 2020-10-23
Accepted: 2020-10-28
Published Online: 2020-11-19
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0172/html
Button zum nach oben scrollen