Abstract
The composites Pt3Ni/C and Pt3Co/C are electrocatalysts for oxygen reduction reactions (ORRs). This study compares the electrocatalytic activity of these electrodes that are used to detect oxygen, and determines their suitability for use in proton exchange membrane fuel cells (PEMFCs). Chemical reduction is used to produce the Pt3Ni/C and Pt3Co/C electrocatalysts. The particle size, elemental composition and crystallinity of the intermetallic electrocatalysts are determined using transmission electron microscopy (TEM) and an energy-dispersive spectrometer (EDX). The ORR activity of the Pt3Ni/C and Pt3Co/C electrocatalysts is determined using cyclic voltammetry (CV), a polarization curve (PC) and a rotating disk electrode (RDE). The Pt3Ni/C electrode registers a greater current for the ORR as compared to the Pt3Co/C electrode. Both electrodes exhibit a linear relationship between response current and oxygen concentration in the detection range from 100 to 1000 ppm. The Pt3Ni/C electrode exhibits a significant sensitivity to oxygen up to 13.4 μA ppm−1 cm−2. A membrane electrode assembly (MEA) that is produced using Pt3Ni/C as a cathodic electrocatalyst in a single PEMFC generates a maximum power density of 1097 mW cm−2.
Funding source: National Science Council
Award Identifier / Grant number: MOST108-2221-E-035-051100-
Funding source: Feng Chia University
Acknowledgments
The authors thank the Precision Instrument Support Center of Feng Chia University for providing fabrication and measurement facilities.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This study was funded by National Science Council of Taiwan (MOST108-2221-E-035-051100-) and Feng Chia University.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Park, C. O., Fergus, J. W., Miura, N., Park, J. Choi, J. Ionics 2009, 15, 261; https://doi.org/10.1007/s11581-008-0300-6.Search in Google Scholar
2. Knake, R., Jacquinot, P., Hodgson, A. W. E., Hauser, P. C. Anal. Chim. Acta 2005, 549, 1; https://doi.org/10.1016/j.aca.2005.06.007.Search in Google Scholar
3. Hwang, B. J., Liu, Y. C., Hsu, J. J. Solid State Electrochem. 1998, 2, 378; https://doi.org/10.1007/s100080050114.Search in Google Scholar
4. Wallgren, K., Sotiropoulos, S. Sens. Actuators, B 1999, 60, 174; https://doi.org/10.1016/s0925-4005(99)00268-3.Search in Google Scholar
5. Gao, Y., Kita, H., Watanabe, Y., Sima, K. Appl. Electrochem. 1993, 23, 1102; https://doi.org/10.1007/bf00625582.Search in Google Scholar
6. Fu, K., Zeng, L., Liu, J., Liu, M., Li, S., Guo, W., Pan, M. J. Alloys Compd. 2020, 815, 152374; https://doi.org/10.1016/j.jallcom.2019.152374.Search in Google Scholar
7. Debe, M. K. Nature 2012, 486, 43; https://doi.org/10.1038/nature11115.Search in Google Scholar PubMed
8. Rabis, A., Rodriguez, P., Schmidt, T.J. ACS Catal. 2012, 2, 864; https://doi.org/10.1021/cs3000864.Search in Google Scholar
9. Nie, Y., Li, L., Wei, Z. Chem. Soc. Rev. 2015, 44, 2168; https://doi.org/10.1039/c4cs00484a.Search in Google Scholar PubMed
10. Steele, B. C. H., Heinzel, A. Nature 2001, 414, 345; https://doi.org/10.1038/35104620.Search in Google Scholar PubMed
11. Lina, C., Goenaga, A. G., Williams, K., Barkholtz, H. M., Grabstanowicz, L. R., Brooksbank, J. A., Papandrew, A. B., Elzein, R., Schlaf, R., Zou. J. Electrochem. 2016, 3, 1541.10.1002/celc.201600163Search in Google Scholar
12. Eric, P., Jaouen, F., Lefevre, M., Larouche, N., Tian, J., Herranz, J., Dodelet, J. P. Nat. Commun. 2011, 2, 416, https://doi.org/10.1038/ncomms1427.Search in Google Scholar PubMed
13. Lin, R., Che, L., Shen, D. D., Cai, X. Electrochim. Acta 2020, 330, 135251; https://doi.org/10.1016/j.electacta.2019.135251.Search in Google Scholar
14. Stamenkovic, V. R., Fowler, B., Mun, B. S., Wang, G., Philip, N., Lucas, C. A., Nenad, M., Markovic, M. Science 2007, 315, 493; https://doi.org/10.1126/science.1135941.Search in Google Scholar PubMed
15. Do, C. L., Pham, T. S., Nguyen, N. P., Tran, V. Q., Pham, H. Nanosci. Nanotechnol. Lett. 2015, 6, 025009; https://doi.org/10.1088/2043-6262/6/2/025009.Search in Google Scholar
16. Zhao, Y., Liu, J., Wang, F. Phys. Chem. Chem. Phys. 2014, 16, 19298; https://doi.org/10.1039/c4cp02531h.Search in Google Scholar PubMed
17. Polagani, R. K., Surywanshi, P. L., Gumfekar, S. P., Sonawane, S. H., Ashokkumar, M. Sustain. Energy Fuel. 2018, 2, 1491; https://doi.org/10.1039/c8se00100f.Search in Google Scholar
18. Seunghee, W., Kim, L., Lee, J. K., Bong, S., Lee, J. Electrochim. Acta 2011, 56, 3036, https://doi.org/10.1016/j.electacta.2011.01.002.Search in Google Scholar
19. Travitsky, N., Ripenbein, T., Golodnitsky, D., Rosenberg, Y., Burshtein, L., Peled, E. J. Power Sources 2006, 161, 782; https://doi.org/10.1016/j.jpowsour.2006.05.035.Search in Google Scholar
20. Beyhan, S., Sahin, N. E., Pronier, S., Leger, J. M. Electrochim. Acta 2015, 151, 565; https://doi.org/10.1016/j.electacta.2014.11.053.Search in Google Scholar
21. Ticianelli, E. A., Gonzalez, E. R., Vielstich, W., Gasteiger, W., Lamm, A. Handbook of Fuel Cells - Fundamentals, Technology and Applications, Vol. 2, 2003; p. 490.Search in Google Scholar
22. Guterman, A. V., Pakhomova, E. B., Guterman, V. E., Kabirov, Y.V. Inorg. Chem. 2009, 45, 767; https://doi.org/10.1134/s0020168509070115.Search in Google Scholar
23. Masa, J., McAuley, C. B., Schuhmann, W., Compton, R. G. Nano Res. 2014, 7, 71; https://doi.org/10.1007/s12274-013-0372-0.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study
- A study of antituberculosis activities and crystal structures of (E)-2-[2-(arylidene)hydrazinyl]pyrimidine and (E)-N1-(arylidene)pyrimidine-2-carbohydrazide derivatives
- Pt3Ni/C and Pt3Co/C cathodes as electrocatalysts for use in oxygen sensors and proton exchange membrane fuel cells
- Selective cyclization modes of methyl 3′-heteroarylamino-2′-(2,5-dichlorothiophene-3-carbonyl)acrylates. Synthesis of model (thienyl)pyrazolo- and triazolo[1,5-α]pyrimidines
- Synthesis and crystal structures of two new lead(II) complexes with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy): subtle interplay of weak intermolecular interactions
- Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]
- Synthesis, crystal structure and photoluminescence of a binuclear rhenium(I) carbonyl complex incorporated in a framework of a distorted salophen ligand
- 1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“
- Note
- YIrIn with ZrNiAl-type structure
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study
- A study of antituberculosis activities and crystal structures of (E)-2-[2-(arylidene)hydrazinyl]pyrimidine and (E)-N1-(arylidene)pyrimidine-2-carbohydrazide derivatives
- Pt3Ni/C and Pt3Co/C cathodes as electrocatalysts for use in oxygen sensors and proton exchange membrane fuel cells
- Selective cyclization modes of methyl 3′-heteroarylamino-2′-(2,5-dichlorothiophene-3-carbonyl)acrylates. Synthesis of model (thienyl)pyrazolo- and triazolo[1,5-α]pyrimidines
- Synthesis and crystal structures of two new lead(II) complexes with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy): subtle interplay of weak intermolecular interactions
- Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]
- Synthesis, crystal structure and photoluminescence of a binuclear rhenium(I) carbonyl complex incorporated in a framework of a distorted salophen ligand
- 1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“
- Note
- YIrIn with ZrNiAl-type structure