Abstract
The heterocyclic mesoionic compound (1,4-diphenyl-1H-1,2,4-triazol-4-ium-3-yl)(phenyl)amide („Nitron“) has recently been found to exist in a prototropic equilibrium with minor amounts of a nucleophilic heterocyclic carbene of the 1,2,4-triazolyl-5-ylidene type. Here we report that Nitron reacts with 1-trifluoromethyl-substituted prop-2-yne iminium salts by conjugate nucleophilic addition of the anionic PhN‒ substituent in the mesoionic tautomer, whereas the nucleophilic triazolylidene form is involved in the reaction with 1-CF3-prop-2-yne imines. 3-(2,3-Dihydro-1H-benzo[c]azepin-5-yl)-1H-1,2,4-triazol-4-ium triflate salts were obtained in the former case and (Z)-9-arylidene-1,2,4,7-tetraazaspiro[4.4]nona-2,7-dienes in the latter.
Acknowledgments
We thank B. Müller (Institute of Inorganic Chemistry II) for the collection of the X-ray diffraction data and Dr. M. Wunderlin for obtaining the mass spectra.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: Ulm University.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. The Merck Index: An Encyclopaedia of Chemicals, Drugs and Biologicals, 13th ed.; Merck & Co., Inc.: Whitehouse Station, New Jersey, 2001. entry 6646.Search in Google Scholar
2. Busch, M. Ber. Dtsch. Chem. Ges. 1905, 38, 856–860; https://doi.org/10.1002/cber.190503801148.Search in Google Scholar
3. Busch, M. Ber. Dtsch. Chem. Ges. 1905, 38, 861–866; https://doi.org/10.1002/cber.190503801149.Search in Google Scholar
4. Schönberg, A. J. Chem. Soc. 1938, 824–825; https://doi.org/10.1039/jr9380000824.Search in Google Scholar
5. Warren, F. L. J. Chem. Soc. 1938, 1100.Search in Google Scholar
6. Baker, W., Ollis, W. D. Q. Rev. 1957, 11, 15–29; https://doi.org/10.1039/qr9571100015.Search in Google Scholar
7. Olah, G. A. J. Inorg. Nucl. Chem. 1961, 16, 225–232; https://doi.org/10.1016/0022-1902(61)80494-6.Search in Google Scholar
8. X-ray structure determination, Cannon, J. R., Raston, C. L., White, A. H. Aust. J. Chem. 1980, 33, 2237–2247; https://doi.org/10.1071/ch9802237.Search in Google Scholar
9. Simas, A. M., Miller, J., de Athayade Filho, P. F. Can. J. Chem. 1998, 76, 869–872; https://doi.org/10.1139/v98-065.Search in Google Scholar
10. Ramsden, C. A., Oziminski, W. P. Tetrahedron 2015, 71, 6846–6851; https://doi.org/10.1016/j.tet.2015.07.024.Search in Google Scholar
11. Färber, C., Leibold, M., Bruhn, C., Maurer, M., Siemeling, U. Chem. Commun. 2012, 48, 227–229; https://doi.org/10.1039/c1cc16460k.Search in Google Scholar PubMed
12. Hitzel, S., Färber, C., Bruhn, C., Siemeling, U. Organometallics 2014, 33, 425–428; https://doi.org/10.1021/om401058e.Search in Google Scholar
13. Thie, C., Hitzel, S., Wallbaum, L., Bruhn, C., Siemeling, U. J. Organomet. Chem. 2016, 821, 112–121; https://doi.org/10.1016/j.jorganchem.2016.03.023.Search in Google Scholar
14. Enders, D., Breuer, K., Raabe, G., Runsink, J., Teles, J. H., Melder, J.-P., Ebel, K., Brode, S. Angew. Chem. Int. Ed. Engl. 1995, 34, 1021–1023; https://doi.org/10.1002/anie.199510211.Search in Google Scholar
15. Enders, D., Breuer, K., Runsink, J., Teles, J. H. Liebigs Ann. Chem. 1996, 2019–2028; https://doi.org/10.1002/jlac.199619961212.Search in Google Scholar
16. Enders, D., Breuer, K., Kallfass, U., Balensiefer, T. Synthesis 2003, 1292–1295; https://doi.org/10.1055/s-2003-39409.Search in Google Scholar
17. Reisser, M., Maas, G. J. Org. Chem. 2004, 69, 4913–4924; https://doi.org/10.1021/jo049586o.Search in Google Scholar PubMed
18. Espenlaub, S., Gerster, H., Maas, G. ARKIVOC 2007, (iii), 114–131; https://doi.org/10.3998/ark.5550190.0008.311.Search in Google Scholar
19. Schneider, T., Seitz, B., Schiwek, M., Maas, G. J. Fluor. Chem. 2020, 235, 109567; https://doi.org/10.1016/j.jfluchem.2020.109567.Search in Google Scholar
20. Schneider, T., Keim, M., Seitz, B., Maas, G. Beilstein J. Org. Chem. 2020, 16, 2064–2072; https://doi.org/10.3762/bjoc.16.173.Search in Google Scholar PubMed PubMed Central
21. Weil, M., Fürst, M. Acta Crystallogr. 2020, E76, 1003–1006; https://doi.org/10.1107/s2056989020006933.Search in Google Scholar
22. Reinhard, R., Glaser, M., Neumann, R., Maas, G. J. Org. Chem. 1997, 62, 7744–7751; https://doi.org/10.1021/jo9710036.Search in Google Scholar
23. Nedolya, N. A., Trofinov, B. A. Chem. Heterocycl. Compd. 2013, 49, 152–176. translated from: Khim. Geterosikl. Soedin. 2013, 49, 166‒190; https://doi.org/10.1007/s10593-013-1236-y.Search in Google Scholar
24. Chen, Z., Zhu, J., Xie, H., Li, S., Wu, Y., Gong, Y. Org. Biomol. Chem. 2011, 9, 5682–5691; https://doi.org/10.1039/c1ob05371j.Search in Google Scholar PubMed
25. Johnson, P. L., Renga, J. M., Galliford, C. V., Whiteker, G. T., Giampietro, N. C. Org. Lett. 2015, 17, 2905–2907; https://doi.org/10.1021/acs.orglett.5b01176.Search in Google Scholar PubMed
26. Cao, J., Yang, X., Hua, Y., Deng, Y., Lai, G. Org. Lett. 2011, 13, 478–481; https://doi.org/10.1021/ol1028207.Search in Google Scholar PubMed
27. Chen, J.-R., Hu, X.-Q., Lu, L.-Q., Xiao, W.-J. Chem. Rev. 2015, 115, 5301−5365; https://doi.org/10.1021/cr5006974.Search in Google Scholar PubMed
28. Grant, J. A., Lu, Z., Tucker, D. E., Hockin, B. M., Yufit, D. S., Fox, M. A., Kataky, R., Chechik, V., O’Donoghue, A. C. Nat. Commun. 2017, 8, 15088; https://doi.org/10.1038/ncomms15088.Search in Google Scholar PubMed PubMed Central
29. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed
30. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar
31. Farrugia, L. J. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0178).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study
- A study of antituberculosis activities and crystal structures of (E)-2-[2-(arylidene)hydrazinyl]pyrimidine and (E)-N1-(arylidene)pyrimidine-2-carbohydrazide derivatives
- Pt3Ni/C and Pt3Co/C cathodes as electrocatalysts for use in oxygen sensors and proton exchange membrane fuel cells
- Selective cyclization modes of methyl 3′-heteroarylamino-2′-(2,5-dichlorothiophene-3-carbonyl)acrylates. Synthesis of model (thienyl)pyrazolo- and triazolo[1,5-α]pyrimidines
- Synthesis and crystal structures of two new lead(II) complexes with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy): subtle interplay of weak intermolecular interactions
- Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]
- Synthesis, crystal structure and photoluminescence of a binuclear rhenium(I) carbonyl complex incorporated in a framework of a distorted salophen ligand
- 1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“
- Note
- YIrIn with ZrNiAl-type structure
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study
- A study of antituberculosis activities and crystal structures of (E)-2-[2-(arylidene)hydrazinyl]pyrimidine and (E)-N1-(arylidene)pyrimidine-2-carbohydrazide derivatives
- Pt3Ni/C and Pt3Co/C cathodes as electrocatalysts for use in oxygen sensors and proton exchange membrane fuel cells
- Selective cyclization modes of methyl 3′-heteroarylamino-2′-(2,5-dichlorothiophene-3-carbonyl)acrylates. Synthesis of model (thienyl)pyrazolo- and triazolo[1,5-α]pyrimidines
- Synthesis and crystal structures of two new lead(II) complexes with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy): subtle interplay of weak intermolecular interactions
- Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]
- Synthesis, crystal structure and photoluminescence of a binuclear rhenium(I) carbonyl complex incorporated in a framework of a distorted salophen ligand
- 1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“
- Note
- YIrIn with ZrNiAl-type structure