Home 1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“
Article
Licensed
Unlicensed Requires Authentication

1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“

  • Gerhard Maas ORCID logo EMAIL logo and Raphael Koch
Published/Copyright: November 23, 2020
Become an author with De Gruyter Brill

Abstract

The heterocyclic mesoionic compound (1,4-diphenyl-1H-1,2,4-triazol-4-ium-3-yl)(phenyl)amide („Nitron“) has recently been found to exist in a prototropic equilibrium with minor amounts of a nucleophilic heterocyclic carbene of the 1,2,4-triazolyl-5-ylidene type. Here we report that Nitron reacts with 1-trifluoromethyl-substituted prop-2-yne iminium salts by conjugate nucleophilic addition of the anionic PhN substituent in the mesoionic tautomer, whereas the nucleophilic triazolylidene form is involved in the reaction with 1-CF3-prop-2-yne imines. 3-(2,3-Dihydro-1H-benzo[c]azepin-5-yl)-1H-1,2,4-triazol-4-ium triflate salts were obtained in the former case and (Z)-9-arylidene-1,2,4,7-tetraazaspiro[4.4]nona-2,7-dienes in the latter.


Corresponding author: Gerhard Maas, Institute of Organic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany, E-mail:

Acknowledgments

We thank B. Müller (Institute of Inorganic Chemistry II) for the collection of the X-ray diffraction data and Dr. M. Wunderlin for obtaining the mass spectra.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Ulm University.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. The Merck Index: An Encyclopaedia of Chemicals, Drugs and Biologicals, 13th ed.; Merck & Co., Inc.: Whitehouse Station, New Jersey, 2001. entry 6646.Search in Google Scholar

2. Busch, M. Ber. Dtsch. Chem. Ges. 1905, 38, 856–860; https://doi.org/10.1002/cber.190503801148.Search in Google Scholar

3. Busch, M. Ber. Dtsch. Chem. Ges. 1905, 38, 861–866; https://doi.org/10.1002/cber.190503801149.Search in Google Scholar

4. Schönberg, A. J. Chem. Soc. 1938, 824–825; https://doi.org/10.1039/jr9380000824.Search in Google Scholar

5. Warren, F. L. J. Chem. Soc. 1938, 1100.Search in Google Scholar

6. Baker, W., Ollis, W. D. Q. Rev. 1957, 11, 15–29; https://doi.org/10.1039/qr9571100015.Search in Google Scholar

7. Olah, G. A. J. Inorg. Nucl. Chem. 1961, 16, 225–232; https://doi.org/10.1016/0022-1902(61)80494-6.Search in Google Scholar

8. X-ray structure determination, Cannon, J. R., Raston, C. L., White, A. H. Aust. J. Chem. 1980, 33, 2237–2247; https://doi.org/10.1071/ch9802237.Search in Google Scholar

9. Simas, A. M., Miller, J., de Athayade Filho, P. F. Can. J. Chem. 1998, 76, 869–872; https://doi.org/10.1139/v98-065.Search in Google Scholar

10. Ramsden, C. A., Oziminski, W. P. Tetrahedron 2015, 71, 6846–6851; https://doi.org/10.1016/j.tet.2015.07.024.Search in Google Scholar

11. Färber, C., Leibold, M., Bruhn, C., Maurer, M., Siemeling, U. Chem. Commun. 2012, 48, 227–229; https://doi.org/10.1039/c1cc16460k.Search in Google Scholar PubMed

12. Hitzel, S., Färber, C., Bruhn, C., Siemeling, U. Organometallics 2014, 33, 425–428; https://doi.org/10.1021/om401058e.Search in Google Scholar

13. Thie, C., Hitzel, S., Wallbaum, L., Bruhn, C., Siemeling, U. J. Organomet. Chem. 2016, 821, 112–121; https://doi.org/10.1016/j.jorganchem.2016.03.023.Search in Google Scholar

14. Enders, D., Breuer, K., Raabe, G., Runsink, J., Teles, J. H., Melder, J.-P., Ebel, K., Brode, S. Angew. Chem. Int. Ed. Engl. 1995, 34, 1021–1023; https://doi.org/10.1002/anie.199510211.Search in Google Scholar

15. Enders, D., Breuer, K., Runsink, J., Teles, J. H. Liebigs Ann. Chem. 1996, 2019–2028; https://doi.org/10.1002/jlac.199619961212.Search in Google Scholar

16. Enders, D., Breuer, K., Kallfass, U., Balensiefer, T. Synthesis 2003, 1292–1295; https://doi.org/10.1055/s-2003-39409.Search in Google Scholar

17. Reisser, M., Maas, G. J. Org. Chem. 2004, 69, 4913–4924; https://doi.org/10.1021/jo049586o.Search in Google Scholar PubMed

18. Espenlaub, S., Gerster, H., Maas, G. ARKIVOC 2007, (iii), 114–131; https://doi.org/10.3998/ark.5550190.0008.311.Search in Google Scholar

19. Schneider, T., Seitz, B., Schiwek, M., Maas, G. J. Fluor. Chem. 2020, 235, 109567; https://doi.org/10.1016/j.jfluchem.2020.109567.Search in Google Scholar

20. Schneider, T., Keim, M., Seitz, B., Maas, G. Beilstein J. Org. Chem. 2020, 16, 2064–2072; https://doi.org/10.3762/bjoc.16.173.Search in Google Scholar PubMed PubMed Central

21. Weil, M., Fürst, M. Acta Crystallogr. 2020, E76, 1003–1006; https://doi.org/10.1107/s2056989020006933.Search in Google Scholar

22. Reinhard, R., Glaser, M., Neumann, R., Maas, G. J. Org. Chem. 1997, 62, 7744–7751; https://doi.org/10.1021/jo9710036.Search in Google Scholar

23. Nedolya, N. A., Trofinov, B. A. Chem. Heterocycl. Compd. 2013, 49, 152–176. translated from: Khim. Geterosikl. Soedin. 2013, 49, 166‒190; https://doi.org/10.1007/s10593-013-1236-y.Search in Google Scholar

24. Chen, Z., Zhu, J., Xie, H., Li, S., Wu, Y., Gong, Y. Org. Biomol. Chem. 2011, 9, 5682–5691; https://doi.org/10.1039/c1ob05371j.Search in Google Scholar PubMed

25. Johnson, P. L., Renga, J. M., Galliford, C. V., Whiteker, G. T., Giampietro, N. C. Org. Lett. 2015, 17, 2905–2907; https://doi.org/10.1021/acs.orglett.5b01176.Search in Google Scholar PubMed

26. Cao, J., Yang, X., Hua, Y., Deng, Y., Lai, G. Org. Lett. 2011, 13, 478–481; https://doi.org/10.1021/ol1028207.Search in Google Scholar PubMed

27. Chen, J.-R., Hu, X.-Q., Lu, L.-Q., Xiao, W.-J. Chem. Rev. 2015, 115, 5301−5365; https://doi.org/10.1021/cr5006974.Search in Google Scholar PubMed

28. Grant, J. A., Lu, Z., Tucker, D. E., Hockin, B. M., Yufit, D. S., Fox, M. A., Kataky, R., Chechik, V., O’Donoghue, A. C. Nat. Commun. 2017, 8, 15088; https://doi.org/10.1038/ncomms15088.Search in Google Scholar PubMed PubMed Central

29. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

30. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

31. Farrugia, L. J. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0178).


Received: 2020-11-02
Accepted: 2020-11-11
Published Online: 2020-11-23
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0178/html
Scroll to top button