Startseite A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study

  • Geng Zhang , Xinzhao Xia , Jianhua Xu , Lixian Xia , Cong Wang und Huilu Wu EMAIL logo
Veröffentlicht/Copyright: 3. November 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new one-dimensional Zn(II) coordination polymer, {[ZnCl2(BBM)]·CH3OH}n (2,2-(1,4-butanediyl)bis-1,3-benzimidazole [BBM]), has been obtained from the hydrothermal reaction of zinc chloride with the flexible bis-benzimidazole ligand BBM and characterized by single-crystal X-ray diffraction, elemental analysis, IR and UV–vis spectra. Structural analysis has revealed that the BBM ligand connects the Zn(II) atoms to form a square-wave chain, which is further extended into supramolecular layers through hydrogen bonds and π···π stacking interactions. Solid-state fluorescence investigations showed that the Zn(II) coordination polymer has an emission peak at 381 nm upon excitation at 330 nm, which is attributed to ligand-centered luminescence. It is only slightly red shifted as compared to the ligand but partially quenched due to the strong π···π stacking interactions.


Corresponding author: Huilu Wu, School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, P. R. China, E-mail:

Funding source: Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University

Award Identifier / Grant number: 152022

Award Identifier / Grant number: 17JR5RA090

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The present research was supported by the Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University (Grant No. 152022) and Natural Science Foundation of Gansu Province (Grant No. 17JR5RA090).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Wan, C. Q., Yan, H. J., Wang, Z. J., Yang, J. Polyhedron 2014, 83, 116–121; https://doi.org/10.1016/j.poly.2014.05.043.Suche in Google Scholar

2. Wang, D. F., Zhang, T., Dai, S. M., Huang, R. B., Zheng, L. S. Inorg. Chim. Acta 2014, 423, 193–200; https://doi.org/10.1016/j.ica.2014.08.013.Suche in Google Scholar

3. Mao, S. S., Shen, K. S., Shi, X. K., Xu, Y. L., Wu, H. L. Appl. Organomet. Chem. 2017, 31, e3747; https://doi.org/10.1002/aoc.3747.Suche in Google Scholar

4. Shao, M., Li, M. X., Wang, Z. X., He, X., Zhang, H. H. Cryst. Growth Des. 2017, 17, 6281–6290; https://doi.org/10.1021/acs.cgd.7b00967.Suche in Google Scholar

5. Yue, Q., Liu, X., Guo, W. X., Gao, E. Q. CrystEngComm 2018, 20, 4258–4267; https://doi.org/10.1039/c8ce00692j.Suche in Google Scholar

6. Lee, J., Kang, Y. J., Cho, N. S., Park, K. M. Cryst. Growth Des. 2016, 16, 996–1004; https://doi.org/10.1021/acs.cgd.5b01544.Suche in Google Scholar

7. Song, Y., Fan, R. Q., Gao, S., Wang, X. M., Wang, P., Yang, Y. L., Wang, Y. L. Inorg. Chem. Commun. 2015, 53, 34–41.10.1016/j.inoche.2015.01.004Suche in Google Scholar

8. Yao, S. L., Zheng, T. F., Tian, X. M., Liu, S. J., Cao, C., Zhu, Z. H., Chen, Y. Q., Chen, J. L., Wen, H. R. CrystEngComm 2018, 20, 5822–5832; https://doi.org/10.1039/c8ce01261j.Suche in Google Scholar

9. Zhao, X. X., Liu, D., Li, Y. H., Cui, G. H. Polyhedron 2018, 156, 200–207; https://doi.org/10.1016/j.poly.2018.09.041.Suche in Google Scholar

10. Li, J. X., Qin, Z. B., Li, Y. H., Cui, G. H. Polyhedron 2018, 151, 530–536; https://doi.org/10.1016/j.poly.2018.06.019.Suche in Google Scholar

11. Rice, C. A., Colon, B. L., Alp, M., Göker, H., Boykin, D. W., Kyle, D. E. Antimicrob. Agents Chemother. 2015, 59, 2037–2044; https://doi.org/10.1128/aac.05122-14.Suche in Google Scholar

12. Chang, H. N., Hou, S. X., Cui, G. H. J. Inorg. Organomet. Polym. Mater. 2017, 27, 518–527; https://doi.org/10.1007/s10904-016-0494-4.Suche in Google Scholar

13. Hao, J. M., Yu, B. Y., Hecke, K. V., Cui, G. H. CrystEngComm 2015, 17, 2279–2293; https://doi.org/10.1039/c4ce02090a.Suche in Google Scholar

14. Wang, J. W., Cui, G. H., Qin, L., Xiao, S. L. Z. Naturforsch. 2013, 68b, 250–256; https://doi.org/10.5560/znb.2013-2319.Suche in Google Scholar

15. Zhang, D. C., Li, X. CrystEngComm 2017, 19, 6673–6680; https://doi.org/10.1039/c7ce01618b.Suche in Google Scholar

16. Mikata, Y., Ohnishi, R., Nishijima, R., Konno, H. Inorg. Chem. 2016, 55, 11440–11446; https://doi.org/10.1021/acs.inorgchem.6b01967.Suche in Google Scholar PubMed

17. Devi, M., Dhir, A., Pradeepa, C. P. New J. Chem. 2016, 40, 1269–1277; https://doi.org/10.1039/c5nj02175h.Suche in Google Scholar

18. Zhu, R. R., Wang, T., Wang, D. W., Yan, T., Wang, Q., Li, H. X., Xue, Z., Zhou, J., Du, L., Zhao, Q. H. New J. Chem. 2019, 43, 1494–1504; https://doi.org/10.1039/c8nj05508d.Suche in Google Scholar

19. Gupta, A. K., Tomar, K., Bharadwaj, P. K. New J. Chem. 2017, 41, 14505–14515; https://doi.org/10.1039/c7nj02651j.Suche in Google Scholar

20. Hu, Y., Ding, M., Liu, X. Q., Sun, L. B., Jiang, H. L. Chem. Commun. 2016, 52, 5734–5737; https://doi.org/10.1039/c6cc01597b.Suche in Google Scholar PubMed

21. Liu, X. J., Wang, X., Xu, J. L., Tian, D., Chen, R. Y., Xu, J., Bu, X. H. Dalton Trans. 2017, 46, 4893–4897; https://doi.org/10.1039/c7dt00330g.Suche in Google Scholar

22. Qu, Y., Wang, C., Zhao, K., Wu, Y. C., Huang, G. Z., Han, X. T., Wu, H. L. J. Coord. Chem. 2019, 72, 3046–3056; https://doi.org/10.1080/00958972.2019.1675049.Suche in Google Scholar

23. Qu, Y., Zhao, K., Wang, C., Wu, Y. C., Xia, L. X., Wu, H. L. J. Mol. Struct. 2020, 1203, 127424; https://doi.org/10.1016/j.molstruc.2019.127424.Suche in Google Scholar

24. Mao, S. S., Han, X. T., Li, C., Xu, Y. L., Shen, K. S., Shi, X. K., Wu, H. L. Spectrochim. Acta A 2018, 203, 408–414; https://doi.org/10.1016/j.saa.2018.06.003.Suche in Google Scholar

25. Tang, X., Mao, S. S., Shi, X. K., Shen, K. S., Wu, H. L. Z. Naturforsch 2017, 72b, 281–288; https://doi.org/10.1515/znb-2016-0233.Suche in Google Scholar

26. Xu, Y. L., Shen, K. S., Mao, S. S., Shi, X. K., Wu, H. L., Fan, X. Y. Appl. Organomet. Chem. 2018, 32, e4041; https://doi.org/10.1002/aoc.3902.Suche in Google Scholar

27. Şener, E., Turgut, H., Yalçin, I. Int. J. Pharmaceut. 1994, 110, 109–115.10.1016/0378-5173(94)90148-1Suche in Google Scholar

28. Smart, Saint+. Area Detector Control and Integration Software; Bruker AXS Inc.: Madison, Wisconsin (USA), 2007.Suche in Google Scholar

29. Sheldrick, G. M. Acta Crystallogr. 2008, 64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

30. Sadabs. Bruker AXS Inc.: Madison, Wisconsin (USA), 2000.Suche in Google Scholar

31. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D., Spagna, R. J. Appl. Crystallogr. 2007, 40, 609–613; https://doi.org/10.1107/s0021889807010941.Suche in Google Scholar

32. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

33. Tao, C. H., Ma, J. C., Zhu, L. C., Zhang, Y., Dong, W. K. Polyhedron 2017, 128, 57–67; https://doi.org/10.1016/j.poly.2017.02.040.Suche in Google Scholar

34. Chai, L. Q., Li, Y. X., Chen, L. C., Zhang, J. Y., Huang, J. J. Inorg. Chim. Acta 2016, 444, 193–201; https://doi.org/10.1016/j.ica.2016.01.038.Suche in Google Scholar

35. Song, X. Q., Liu, P. P., Liu, Y. A., Zhou, J. J., Wang, X. L. Dalton Trans. 2016, 45, 8154–8163; https://doi.org/10.1039/c6dt00212a.Suche in Google Scholar PubMed

36. Wu, H. L., Yuan, J. K., Bai, Y., Pan, G. L., Wang, H., Shu, X. B. J. Photochem. Photobio. B 2012, 107, 65–72; https://doi.org/10.1016/j.jphotobiol.2011.11.010.Suche in Google Scholar PubMed

37. Ren, Z. L., Hao, J., Hao, P., Dong, X. Y., Bai, Y., Dong, W. K. Z. Naturforsch 2018, 73b, 203–210; https://doi.org/10.1515/znb-2017-0191.Suche in Google Scholar

38. Dong, Y. J., Ma, J. C., Zhu, L. C., Dong, W. K., Zhang, Y. J. Coord. Chem. 2017, 70, 103–115; https://doi.org/10.1080/00958972.2016.1262537.Suche in Google Scholar

39. Wu, H. L., Zhang, Y. H., Chen, C. Y., Zhang, J. W., Bai, Y. C., Shi, F. R., Wang, X. L. New J. Chem. 2014, 38, 3688–3698; https://doi.org/10.1039/c4nj00503a.Suche in Google Scholar

40. Pu, L. M., Long, H. T., Zhang, Y., Bai, Y., Dong, W. K. Polyhedron 2017, 128, 57–67; https://doi.org/10.1016/j.poly.2017.02.033.Suche in Google Scholar

41. Zhang, J., Zhang, Y., Zhang, S. T., Dong, X. Y., Dong, W. K. Asian. J. Chem. 2015, 27, 654–656; https://doi.org/10.14233/ajchem.2015.17547.Suche in Google Scholar

42. Dong, W. K., Ma, J. C., Zhu, L. C., Zhang, Y., Li, X. L. Inorg. Chim. Acta 2016, 445, 140–148; https://doi.org/10.1016/j.ica.2016.02.043.Suche in Google Scholar

43. Dong, W. K., Zhang, J., Zhang, Y., Li, N. Inorg. Chim. Acta 2016, 444, 95–102; https://doi.org/10.1016/j.ica.2016.01.034.Suche in Google Scholar

44. Zhou, Y. L., Zeng, M. H., Ng, S. W. Acta Crystallogr. 2009, E66, m57; https://doi.org/10.1107/s1600536809052738.Suche in Google Scholar

45. Wang, C. R., Yang, X. P., Wang, S. Q., Schipper, D., Jones, R. A. Cryst. Growth Des. 2019, 19, 2149–2154; https://doi.org/10.1021/acs.cgd.8b01766.Suche in Google Scholar

46. Jiang, D. M., Yang, X. P., Chen, H. F., Wang, F., Wang, S. Q., Zhu, T., Zhang, L. J., Huang, S. M. Dalton Trans. 2019, 48, 2206–2212; https://doi.org/10.1039/c8dt04942d.Suche in Google Scholar PubMed

47. Shen, K. S., Han, X. T., Li, C., Huang, G. Z., Mao, S. S., Shi, X. K., Wu, H. L. J. Coord. Chem. 2018, 71, 980–990; https://doi.org/10.1080/00958972.2018.1454593.Suche in Google Scholar

48. Zhao, K., Qu, Y., Wu, Y. C., Wang, C., Shen, K. S., Li, C., Wu, H. L. Transit. Metal Chem. 2019, 44, 713–720; https://doi.org/10.1007/s11243-019-00340-4.Suche in Google Scholar

49. Yang, L., Powell, D. R., Houser, R. P. Dalton Trans. 2007, 9, 955–964; https://doi.org/10.1039/b617136b.Suche in Google Scholar PubMed

50. Sun, D., Wei, Z. H., Yang, C. F., Wang, D. F., Zhang, N., Huang, R. B., Zheng, L. S. CrystEngComm 2011, 13, 1591–1601; https://doi.org/10.1039/c0ce00539h.Suche in Google Scholar

51. Yang, P., Wu, X. X., Huo, J. Z., Ding, B., Wang, Y., Wang, X. G. CrystEngComm 2013, 15, 8097–8109; https://doi.org/10.1039/c3ce40946e.Suche in Google Scholar

52. Karmakar, A., Paul, A., Mahmudov, K. T., Guedes da Silva, M. F. C., Pombeiro, A. J. L. New J. Chem. 2016, 40, 1535–1546; https://doi.org/10.1039/c5nj02411k.Suche in Google Scholar

53. Jadhav, A. N., Pawal, S. B., Chavan, S. S. Inorg. Chim. Acta 2016, 440, 77–83; https://doi.org/10.1016/j.ica.2015.10.026.Suche in Google Scholar

54. Yao, P. F., Liu, H. F., Huang, F. P., Feng, F. L., Qin, X. H., Huang, M. L., Yu, Q., Bian, H. D. CrystEngComm 2016, 18, 938–947; https://doi.org/10.1039/c5ce02236c.Suche in Google Scholar

55. Erer, H., Karaçam, S., Arıcı, M., Yesilel, O. Z., Çelik, Ö. Polyhedron 2015, 98, 180–189; https://doi.org/10.1016/j.poly.2015.06.011.Suche in Google Scholar

56. Tong, H., Dong, Y. Q., Hong, Y. N., Häussler, M., Lam, J. W. Y., Sung, H. H. Y., Yu, X. M., Sun, J. X., Williams, I. D., Kwok, H. S., Tang, B. Z. J. Phys. Chem. C 2007, 111, 2287–2294; https://doi.org/10.1021/jp0630828.Suche in Google Scholar

57. Wang, W. L., Xu, J. W., Sun, Z., Zhang, X. H., Lu, Y., Lai, Y. H. Macromolecules 2006, 39, 7277–7285; https://doi.org/10.1021/ma060510z.Suche in Google Scholar

Received: 2020-06-05
Accepted: 2020-09-10
Published Online: 2020-11-03
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0094/html?lang=de
Button zum nach oben scrollen