A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study
Abstract
A new one-dimensional Zn(II) coordination polymer, {[ZnCl2(BBM)]·CH3OH}n (2,2-(1,4-butanediyl)bis-1,3-benzimidazole [BBM]), has been obtained from the hydrothermal reaction of zinc chloride with the flexible bis-benzimidazole ligand BBM and characterized by single-crystal X-ray diffraction, elemental analysis, IR and UV–vis spectra. Structural analysis has revealed that the BBM ligand connects the Zn(II) atoms to form a square-wave chain, which is further extended into supramolecular layers through hydrogen bonds and π···π stacking interactions. Solid-state fluorescence investigations showed that the Zn(II) coordination polymer has an emission peak at 381 nm upon excitation at 330 nm, which is attributed to ligand-centered luminescence. It is only slightly red shifted as compared to the ligand but partially quenched due to the strong π···π stacking interactions.
Funding source: Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University
Award Identifier / Grant number: 152022
Funding source: Natural Science Foundation of Gansu Province
Award Identifier / Grant number: 17JR5RA090
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The present research was supported by the Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University (Grant No. 152022) and Natural Science Foundation of Gansu Province (Grant No. 17JR5RA090).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Wan, C. Q., Yan, H. J., Wang, Z. J., Yang, J. Polyhedron 2014, 83, 116–121; https://doi.org/10.1016/j.poly.2014.05.043.Suche in Google Scholar
2. Wang, D. F., Zhang, T., Dai, S. M., Huang, R. B., Zheng, L. S. Inorg. Chim. Acta 2014, 423, 193–200; https://doi.org/10.1016/j.ica.2014.08.013.Suche in Google Scholar
3. Mao, S. S., Shen, K. S., Shi, X. K., Xu, Y. L., Wu, H. L. Appl. Organomet. Chem. 2017, 31, e3747; https://doi.org/10.1002/aoc.3747.Suche in Google Scholar
4. Shao, M., Li, M. X., Wang, Z. X., He, X., Zhang, H. H. Cryst. Growth Des. 2017, 17, 6281–6290; https://doi.org/10.1021/acs.cgd.7b00967.Suche in Google Scholar
5. Yue, Q., Liu, X., Guo, W. X., Gao, E. Q. CrystEngComm 2018, 20, 4258–4267; https://doi.org/10.1039/c8ce00692j.Suche in Google Scholar
6. Lee, J., Kang, Y. J., Cho, N. S., Park, K. M. Cryst. Growth Des. 2016, 16, 996–1004; https://doi.org/10.1021/acs.cgd.5b01544.Suche in Google Scholar
7. Song, Y., Fan, R. Q., Gao, S., Wang, X. M., Wang, P., Yang, Y. L., Wang, Y. L. Inorg. Chem. Commun. 2015, 53, 34–41.10.1016/j.inoche.2015.01.004Suche in Google Scholar
8. Yao, S. L., Zheng, T. F., Tian, X. M., Liu, S. J., Cao, C., Zhu, Z. H., Chen, Y. Q., Chen, J. L., Wen, H. R. CrystEngComm 2018, 20, 5822–5832; https://doi.org/10.1039/c8ce01261j.Suche in Google Scholar
9. Zhao, X. X., Liu, D., Li, Y. H., Cui, G. H. Polyhedron 2018, 156, 200–207; https://doi.org/10.1016/j.poly.2018.09.041.Suche in Google Scholar
10. Li, J. X., Qin, Z. B., Li, Y. H., Cui, G. H. Polyhedron 2018, 151, 530–536; https://doi.org/10.1016/j.poly.2018.06.019.Suche in Google Scholar
11. Rice, C. A., Colon, B. L., Alp, M., Göker, H., Boykin, D. W., Kyle, D. E. Antimicrob. Agents Chemother. 2015, 59, 2037–2044; https://doi.org/10.1128/aac.05122-14.Suche in Google Scholar
12. Chang, H. N., Hou, S. X., Cui, G. H. J. Inorg. Organomet. Polym. Mater. 2017, 27, 518–527; https://doi.org/10.1007/s10904-016-0494-4.Suche in Google Scholar
13. Hao, J. M., Yu, B. Y., Hecke, K. V., Cui, G. H. CrystEngComm 2015, 17, 2279–2293; https://doi.org/10.1039/c4ce02090a.Suche in Google Scholar
14. Wang, J. W., Cui, G. H., Qin, L., Xiao, S. L. Z. Naturforsch. 2013, 68b, 250–256; https://doi.org/10.5560/znb.2013-2319.Suche in Google Scholar
15. Zhang, D. C., Li, X. CrystEngComm 2017, 19, 6673–6680; https://doi.org/10.1039/c7ce01618b.Suche in Google Scholar
16. Mikata, Y., Ohnishi, R., Nishijima, R., Konno, H. Inorg. Chem. 2016, 55, 11440–11446; https://doi.org/10.1021/acs.inorgchem.6b01967.Suche in Google Scholar PubMed
17. Devi, M., Dhir, A., Pradeepa, C. P. New J. Chem. 2016, 40, 1269–1277; https://doi.org/10.1039/c5nj02175h.Suche in Google Scholar
18. Zhu, R. R., Wang, T., Wang, D. W., Yan, T., Wang, Q., Li, H. X., Xue, Z., Zhou, J., Du, L., Zhao, Q. H. New J. Chem. 2019, 43, 1494–1504; https://doi.org/10.1039/c8nj05508d.Suche in Google Scholar
19. Gupta, A. K., Tomar, K., Bharadwaj, P. K. New J. Chem. 2017, 41, 14505–14515; https://doi.org/10.1039/c7nj02651j.Suche in Google Scholar
20. Hu, Y., Ding, M., Liu, X. Q., Sun, L. B., Jiang, H. L. Chem. Commun. 2016, 52, 5734–5737; https://doi.org/10.1039/c6cc01597b.Suche in Google Scholar PubMed
21. Liu, X. J., Wang, X., Xu, J. L., Tian, D., Chen, R. Y., Xu, J., Bu, X. H. Dalton Trans. 2017, 46, 4893–4897; https://doi.org/10.1039/c7dt00330g.Suche in Google Scholar
22. Qu, Y., Wang, C., Zhao, K., Wu, Y. C., Huang, G. Z., Han, X. T., Wu, H. L. J. Coord. Chem. 2019, 72, 3046–3056; https://doi.org/10.1080/00958972.2019.1675049.Suche in Google Scholar
23. Qu, Y., Zhao, K., Wang, C., Wu, Y. C., Xia, L. X., Wu, H. L. J. Mol. Struct. 2020, 1203, 127424; https://doi.org/10.1016/j.molstruc.2019.127424.Suche in Google Scholar
24. Mao, S. S., Han, X. T., Li, C., Xu, Y. L., Shen, K. S., Shi, X. K., Wu, H. L. Spectrochim. Acta A 2018, 203, 408–414; https://doi.org/10.1016/j.saa.2018.06.003.Suche in Google Scholar
25. Tang, X., Mao, S. S., Shi, X. K., Shen, K. S., Wu, H. L. Z. Naturforsch 2017, 72b, 281–288; https://doi.org/10.1515/znb-2016-0233.Suche in Google Scholar
26. Xu, Y. L., Shen, K. S., Mao, S. S., Shi, X. K., Wu, H. L., Fan, X. Y. Appl. Organomet. Chem. 2018, 32, e4041; https://doi.org/10.1002/aoc.3902.Suche in Google Scholar
27. Şener, E., Turgut, H., Yalçin, I. Int. J. Pharmaceut. 1994, 110, 109–115.10.1016/0378-5173(94)90148-1Suche in Google Scholar
28. Smart, Saint+. Area Detector Control and Integration Software; Bruker AXS Inc.: Madison, Wisconsin (USA), 2007.Suche in Google Scholar
29. Sheldrick, G. M. Acta Crystallogr. 2008, 64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed
30. Sadabs. Bruker AXS Inc.: Madison, Wisconsin (USA), 2000.Suche in Google Scholar
31. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D., Spagna, R. J. Appl. Crystallogr. 2007, 40, 609–613; https://doi.org/10.1107/s0021889807010941.Suche in Google Scholar
32. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar
33. Tao, C. H., Ma, J. C., Zhu, L. C., Zhang, Y., Dong, W. K. Polyhedron 2017, 128, 57–67; https://doi.org/10.1016/j.poly.2017.02.040.Suche in Google Scholar
34. Chai, L. Q., Li, Y. X., Chen, L. C., Zhang, J. Y., Huang, J. J. Inorg. Chim. Acta 2016, 444, 193–201; https://doi.org/10.1016/j.ica.2016.01.038.Suche in Google Scholar
35. Song, X. Q., Liu, P. P., Liu, Y. A., Zhou, J. J., Wang, X. L. Dalton Trans. 2016, 45, 8154–8163; https://doi.org/10.1039/c6dt00212a.Suche in Google Scholar PubMed
36. Wu, H. L., Yuan, J. K., Bai, Y., Pan, G. L., Wang, H., Shu, X. B. J. Photochem. Photobio. B 2012, 107, 65–72; https://doi.org/10.1016/j.jphotobiol.2011.11.010.Suche in Google Scholar PubMed
37. Ren, Z. L., Hao, J., Hao, P., Dong, X. Y., Bai, Y., Dong, W. K. Z. Naturforsch 2018, 73b, 203–210; https://doi.org/10.1515/znb-2017-0191.Suche in Google Scholar
38. Dong, Y. J., Ma, J. C., Zhu, L. C., Dong, W. K., Zhang, Y. J. Coord. Chem. 2017, 70, 103–115; https://doi.org/10.1080/00958972.2016.1262537.Suche in Google Scholar
39. Wu, H. L., Zhang, Y. H., Chen, C. Y., Zhang, J. W., Bai, Y. C., Shi, F. R., Wang, X. L. New J. Chem. 2014, 38, 3688–3698; https://doi.org/10.1039/c4nj00503a.Suche in Google Scholar
40. Pu, L. M., Long, H. T., Zhang, Y., Bai, Y., Dong, W. K. Polyhedron 2017, 128, 57–67; https://doi.org/10.1016/j.poly.2017.02.033.Suche in Google Scholar
41. Zhang, J., Zhang, Y., Zhang, S. T., Dong, X. Y., Dong, W. K. Asian. J. Chem. 2015, 27, 654–656; https://doi.org/10.14233/ajchem.2015.17547.Suche in Google Scholar
42. Dong, W. K., Ma, J. C., Zhu, L. C., Zhang, Y., Li, X. L. Inorg. Chim. Acta 2016, 445, 140–148; https://doi.org/10.1016/j.ica.2016.02.043.Suche in Google Scholar
43. Dong, W. K., Zhang, J., Zhang, Y., Li, N. Inorg. Chim. Acta 2016, 444, 95–102; https://doi.org/10.1016/j.ica.2016.01.034.Suche in Google Scholar
44. Zhou, Y. L., Zeng, M. H., Ng, S. W. Acta Crystallogr. 2009, E66, m57; https://doi.org/10.1107/s1600536809052738.Suche in Google Scholar
45. Wang, C. R., Yang, X. P., Wang, S. Q., Schipper, D., Jones, R. A. Cryst. Growth Des. 2019, 19, 2149–2154; https://doi.org/10.1021/acs.cgd.8b01766.Suche in Google Scholar
46. Jiang, D. M., Yang, X. P., Chen, H. F., Wang, F., Wang, S. Q., Zhu, T., Zhang, L. J., Huang, S. M. Dalton Trans. 2019, 48, 2206–2212; https://doi.org/10.1039/c8dt04942d.Suche in Google Scholar PubMed
47. Shen, K. S., Han, X. T., Li, C., Huang, G. Z., Mao, S. S., Shi, X. K., Wu, H. L. J. Coord. Chem. 2018, 71, 980–990; https://doi.org/10.1080/00958972.2018.1454593.Suche in Google Scholar
48. Zhao, K., Qu, Y., Wu, Y. C., Wang, C., Shen, K. S., Li, C., Wu, H. L. Transit. Metal Chem. 2019, 44, 713–720; https://doi.org/10.1007/s11243-019-00340-4.Suche in Google Scholar
49. Yang, L., Powell, D. R., Houser, R. P. Dalton Trans. 2007, 9, 955–964; https://doi.org/10.1039/b617136b.Suche in Google Scholar PubMed
50. Sun, D., Wei, Z. H., Yang, C. F., Wang, D. F., Zhang, N., Huang, R. B., Zheng, L. S. CrystEngComm 2011, 13, 1591–1601; https://doi.org/10.1039/c0ce00539h.Suche in Google Scholar
51. Yang, P., Wu, X. X., Huo, J. Z., Ding, B., Wang, Y., Wang, X. G. CrystEngComm 2013, 15, 8097–8109; https://doi.org/10.1039/c3ce40946e.Suche in Google Scholar
52. Karmakar, A., Paul, A., Mahmudov, K. T., Guedes da Silva, M. F. C., Pombeiro, A. J. L. New J. Chem. 2016, 40, 1535–1546; https://doi.org/10.1039/c5nj02411k.Suche in Google Scholar
53. Jadhav, A. N., Pawal, S. B., Chavan, S. S. Inorg. Chim. Acta 2016, 440, 77–83; https://doi.org/10.1016/j.ica.2015.10.026.Suche in Google Scholar
54. Yao, P. F., Liu, H. F., Huang, F. P., Feng, F. L., Qin, X. H., Huang, M. L., Yu, Q., Bian, H. D. CrystEngComm 2016, 18, 938–947; https://doi.org/10.1039/c5ce02236c.Suche in Google Scholar
55. Erer, H., Karaçam, S., Arıcı, M., Yesilel, O. Z., Çelik, Ö. Polyhedron 2015, 98, 180–189; https://doi.org/10.1016/j.poly.2015.06.011.Suche in Google Scholar
56. Tong, H., Dong, Y. Q., Hong, Y. N., Häussler, M., Lam, J. W. Y., Sung, H. H. Y., Yu, X. M., Sun, J. X., Williams, I. D., Kwok, H. S., Tang, B. Z. J. Phys. Chem. C 2007, 111, 2287–2294; https://doi.org/10.1021/jp0630828.Suche in Google Scholar
57. Wang, W. L., Xu, J. W., Sun, Z., Zhang, X. H., Lu, Y., Lai, Y. H. Macromolecules 2006, 39, 7277–7285; https://doi.org/10.1021/ma060510z.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study
- A study of antituberculosis activities and crystal structures of (E)-2-[2-(arylidene)hydrazinyl]pyrimidine and (E)-N1-(arylidene)pyrimidine-2-carbohydrazide derivatives
- Pt3Ni/C and Pt3Co/C cathodes as electrocatalysts for use in oxygen sensors and proton exchange membrane fuel cells
- Selective cyclization modes of methyl 3′-heteroarylamino-2′-(2,5-dichlorothiophene-3-carbonyl)acrylates. Synthesis of model (thienyl)pyrazolo- and triazolo[1,5-α]pyrimidines
- Synthesis and crystal structures of two new lead(II) complexes with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy): subtle interplay of weak intermolecular interactions
- Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]
- Synthesis, crystal structure and photoluminescence of a binuclear rhenium(I) carbonyl complex incorporated in a framework of a distorted salophen ligand
- 1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“
- Note
- YIrIn with ZrNiAl-type structure
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study
- A study of antituberculosis activities and crystal structures of (E)-2-[2-(arylidene)hydrazinyl]pyrimidine and (E)-N1-(arylidene)pyrimidine-2-carbohydrazide derivatives
- Pt3Ni/C and Pt3Co/C cathodes as electrocatalysts for use in oxygen sensors and proton exchange membrane fuel cells
- Selective cyclization modes of methyl 3′-heteroarylamino-2′-(2,5-dichlorothiophene-3-carbonyl)acrylates. Synthesis of model (thienyl)pyrazolo- and triazolo[1,5-α]pyrimidines
- Synthesis and crystal structures of two new lead(II) complexes with the pincer-type ligand 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine (Cl-Ph-tpy): subtle interplay of weak intermolecular interactions
- Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]
- Synthesis, crystal structure and photoluminescence of a binuclear rhenium(I) carbonyl complex incorporated in a framework of a distorted salophen ligand
- 1-Trifluoromethyl-prop-2-yne 1-iminium salts and 1-imines: reactions with the mesoionic „Nitron“
- Note
- YIrIn with ZrNiAl-type structure