Startseite An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6

  • Matthias Weil EMAIL logo
Veröffentlicht/Copyright: 27. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The crystal structure of struvite-type KMgAsO4(H2O)6 has been redetermined from single crystal X-ray diffraction data at room temperature. The previous structure model based on powder X-ray diffraction data was confirmed with higher precision and accuracy and with all hydrogen atoms located. KMgAsO4(H2O)6 undergoes a reversible phase transition of the continuous type at 263(2) K, changing the symmetry from orthorhombic to monoclinic. The corresponding Pnm21P1121 symmetry reduction is of a translationengleiche type with index 2 and was monitored by temperature-dependent powder X-ray diffraction measurements. Such a phase transition is unprecedented for struvite-type compounds. The crystal structure of the monoclinic polymorph was determined from a two-domain crystal at 100 K. Except for the motion of one of the water molecules towards stronger hydrogen-bonding interactions, structural changes between the two polymorphs are small.


Dedicated to: Professor Wolfgang Bensch on the occasion of his 65th birthday.


Acknowledgment

The X-ray Centre of TU Wien is acknowledged for providing access to the X-ray diffractometers.

References

[1] M. Luján, F. Kubel, H. Schmid, Z. Naturforsch.1995, 50b, 1210.10.1515/znb-1995-0815Suche in Google Scholar

[2] M. Luján, J.-P. Rivera, H. Schmid, Ferroelectrics2011, 162, 69.10.1080/00150199408245092Suche in Google Scholar

[3] P. Fischer, M. Luján, F. Kubel, H. Schmid, Ferroelectrics1994, 62, 37.10.1080/00150199408245088Suche in Google Scholar

[4] S. T. Bramwell, A. M. Buckley, P. Day, J. Solid State Chem.1994, 111, 48.10.1006/jssc.1994.1197Suche in Google Scholar

[5] S. Zhang, Y. Huang, H. Jin Seo, Opt. Mater.2010, 32, 1545.10.1016/j.optmat.2010.06.020Suche in Google Scholar

[6] C. B. Palan, N. S. Bajaj, A. Soni, S. K. Omanwar, J. Lumin.2016, 176, 106.10.1016/j.jlumin.2016.03.014Suche in Google Scholar

[7] Z. Abdija, M. Najdoski, V. Koleva, T. Runčevski, R. E. Dinnebier, B. Šoptrajanov, V. Stefov, Z. Anorg. Allg. Chem.2014, 640, 3177.10.1002/zaac.201400265Suche in Google Scholar

[8] Apex-2, Saint and Twinabs, Bruker AXS Inc., Madison, Wisconsin (USA) 2015.Suche in Google Scholar

[9] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr.2015, 48, 3.10.1107/S1600576714022985Suche in Google Scholar PubMed PubMed Central

[10] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Suche in Google Scholar

[11] M. Mathew, L. W. Schroeder, Acta Crystallogr.1979, B35, 11.10.1107/S0567740879002429Suche in Google Scholar

[12] H. D. Flack, Acta Crystallogr.1983, A39, 876.10.1107/S0108767383001762Suche in Google Scholar

[13] E. Kroumova, J. M. Perez-Mato, M. I. Aroyo, J. Appl. Crystallogr.1998, 31, 646.10.1107/S0021889898005524Suche in Google Scholar

[14] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Z. Kristallogr.2006, 221, 15.10.1524/zkri.2006.221.1.15Suche in Google Scholar

[15] Topas (version 4.2), Bruker AXS GmbH, Karlsruhe (Germany) 2009.Suche in Google Scholar

[16] E. Banks, R. Chianelli, R. Korenstein, Inorg. Chem.1975, 14, 1634.10.1021/ic50149a041Suche in Google Scholar

[17] M. Weil, Cryst. Res. Technol.2008, 43,1286.10.1002/crat.200800403Suche in Google Scholar

[18] M. Weil, Acta Crystallogr.2008, E64, i50.10.1107/S1600536808023283Suche in Google Scholar

[19] M. Weil, Acta Crystallogr.2009, E65, i2.10.1107/S1600536809018108Suche in Google Scholar

[20] A. Whitaker, J. W. Jeffery, Acta Crystallogr.1970, B26, 1429.10.1107/S0567740870004284Suche in Google Scholar

[21] A. Whitaker, J. W. Jeffery, Acta Crystallogr.1970, B26, 1440.10.1107/S0567740870004296Suche in Google Scholar

[22] G. Ferraris, M. Franchini-Angela, Acta Crystallogr.1973, B29, 859.10.1107/S0567740873003456Suche in Google Scholar

[23] S. Graeser, W. Postl, H. P. Bojar, P. Berlepsch, T. Armbruster, T. Raber, K. Ettinger, F. Walter, Eur. J. Mineral.2008, 20, 629.10.1127/0935-1221/2008/0020-1810Suche in Google Scholar

[24] G. V. Kiriukhina, O. V. Yakubovich, E. M. Kochetkova, O. V. Dimitrova, A. S. Volkov, Acta Crystallogr.2018, C74, 936.10.1107/S2053229618009798Suche in Google Scholar

[25] U. Müller, Symmetry relationships between crystal structures, Oxford University Press, Oxford 2013.10.1093/acprof:oso/9780199669950.001.0001Suche in Google Scholar

[26] H. Bärnighausen, MATCH, Commun. Math. Chem.1980, 9, 139.Suche in Google Scholar

[27] I. D. Brown, The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford University Press, Oxford 2002.Suche in Google Scholar

[28] I. D. Brown, D. Altermatt, Acta Crystallogr.1985, B41, 244.10.1107/S0108768185002063Suche in Google Scholar

Received: 2018-06-11
Accepted: 2018-08-09
Published Online: 2018-08-27
Published in Print: 2019-01-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
  5. Orthorhombic sulfur from Cap Garonne, Mine du Pradet
  6. An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
  7. ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
  8. Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
  9. Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
  10. Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
  11. Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
  12. The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
  13. Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
  14. Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
  15. CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
  16. Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
  17. Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X (X = Cl, Br, I)
  18. Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
  19. Modulated vacancy ordering in SrGe6−x (x≈0.45)
  20. Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis
Heruntergeladen am 14.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0119/html?lang=de
Button zum nach oben scrollen