Home Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
Article
Licensed
Unlicensed Requires Authentication

Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)

  • Karlheinz Sünkel EMAIL logo , Dietmar Reimann and Patrick Nimax
Published/Copyright: November 24, 2018
Become an author with De Gruyter Brill

Abstract

The reaction of the 3d transition metal dichlorides MCl2 (M=Mn, Fe, Co, Ni, Cu, Zn) with the silver salts of substituted tetracyanocyclopentadienides Ag+ [C5(CN)4X] (X=CN, H, NH2 NO2) gives the complexes [M(MeOH/H2O)4{C5(CN)4)X}2]. Nine of these complexes were characterized by X-ray diffraction and it shows that they all are mononuclear with an octahedral M(N)2(O)4 coordination sphere. In the structures, extensive hydrogen bonding leads to dense three-dimensional network structures.


Dedicated to: Professor Wolfgang Bensch on the occasion of his 65th birthday.


References

[1] D. R. Turner, A. S. R. Chesman, K. S. Murray, G. B. Deacon, S. R. Batten, Chem. Commun. 2011, 47, 10189.10.1039/c1cc11909eSearch in Google Scholar

[2] S. Benmansour, C. Atmani, F. Setifi, S. Triki, M. Marchivie, C. J. Gómez-García, Coord. Chem. Rev. 2010, 254, 1468.10.1016/j.ccr.2009.11.011Search in Google Scholar

[3] S. R. Batten, K. S. Murray. Coord. Chem. Rev. 2003, 246, 103.10.1016/S0010-8545(03)00119-XSearch in Google Scholar

[4] S. R. Batten, B. F. Hoskins, B. Moubaraki, K. S. Murray, R. Robson, J. Chem. Soc. Dalton Trans. 1999, 2977.10.1039/a904383gSearch in Google Scholar

[5] O. Reckeweg, A. Schulz, F. J. DiSalvo, Z. Naturforsch. 2015, 70b, 177.10.1515/znb-2014-0242Search in Google Scholar

[6] C. Nitschke, M. Köckerling, Z. Anorg. Allg. Chem. 2009, 635, 503.10.1002/zaac.200801234Search in Google Scholar

[7] C. Nitschke, M. Köckerling, Inorg. Chem. 2011, 50, 4313.10.1021/ic102278zSearch in Google Scholar

[8] S. Triki, J. S. Pala, M. Decoster, P. Molinié, L. Toupet, Angew. Chem. Int. Ed.1999, 38, 113.10.1002/(SICI)1521-3773(19990115)38:1/2<113::AID-ANIE113>3.0.CO;2-9Search in Google Scholar

[9] A. M. Kutasi, D. R. Turner, P. Jensen, B. Moubaraki, S. R. Batten, K. S. Murray, Inorg. Chem. 2011, 50, 6673.10.1021/ic200591uSearch in Google Scholar

[10] J. A. Schlueter, U. Geiser, J. L. Manson, Acta Crystallogr. 2003, C59, m1.10.1107/S0108270102020334Search in Google Scholar

[11] E. Lefebvre, F. Conan, N. Cosquer, J.-M. Kerbaol, M. Marchivie, J. Sala-Pala, M. M. Kubicki, E. Vigier, C. J. Gómez-García, New J. Chem. 2006, 30, 1197.10.1039/b605030aSearch in Google Scholar

[12] Q. Li, Y. Wang, P. Yan, G. Hou, G. Li, Inorg. Chim. Acta2014, 413, 32.10.1016/j.ica.2013.12.032Search in Google Scholar

[13] S. I. Gurskiy, V. A. Tafeenko, CrystEngComm2012, 14, 2721.10.1039/c2ce06238kSearch in Google Scholar

[14] J. C. Bullinger, D. M. Eichhorn, Inorg. Chim. Acta2009, 362, 4510.10.1016/j.ica.2009.05.012Search in Google Scholar

[15] O. W. Webster, United States Patent 3,835,943, 1974.Search in Google Scholar

[16] O. W. Webster, J. Am. Chem. Soc. 1966, 88, 4055.10.1021/ja00969a029Search in Google Scholar

[17] R. E. Christopher, L. M. Venanzi, Inorg. Chim. Acta1973, 7, 489.10.1016/S0020-1693(00)94869-2Search in Google Scholar

[18] R. J. Less, T. C. Wilson, M. McPartlin, P. T. Wood, D. S. Wright, Chem. Commun. 2011, 47, 10007.10.1039/c1cc13021hSearch in Google Scholar PubMed

[19] K. Sünkel, D. Reimann, Z. Naturforsch. 2013, 68b, 546.10.5560/znb.2013-3077Search in Google Scholar

[20] P. R. Nimax, K. Sünkel, ChemistrySelect2018, 3, 3330.10.1002/slct.201800637Search in Google Scholar

[21] L. J. Farrugia, J. Appl. Crystallogr.1999, 32, 837.10.1107/S0021889899006020Search in Google Scholar

[22] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van derStreek, J. Appl. Crystallogr. 2006, 39, 453.10.1107/S002188980600731XSearch in Google Scholar

[23] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.10.1107/S0021889802022112Search in Google Scholar

[24] G. M. Sheldrick, ActaCrystallogr. 2008, A64, 112.Search in Google Scholar

[25] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. J. Spagna, J. Appl. Crystallogr. 1999, 32, 115.10.1107/S0021889898007717Search in Google Scholar

Received: 2018-08-18
Accepted: 2018-10-31
Published Online: 2018-11-24
Published in Print: 2019-01-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
  5. Orthorhombic sulfur from Cap Garonne, Mine du Pradet
  6. An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
  7. ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
  8. Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
  9. Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
  10. Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
  11. Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
  12. The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
  13. Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
  14. Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
  15. CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
  16. Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
  17. Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X (X = Cl, Br, I)
  18. Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
  19. Modulated vacancy ordering in SrGe6−x (x≈0.45)
  20. Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis
Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0175/html
Scroll to top button