Startseite Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}

  • Marit Gudenschwager , Jens Christoffers und Mathias S. Wickleder EMAIL logo
Veröffentlicht/Copyright: 10. Dezember 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The reaction of Ni(OH)2 and methanetrisulfonic acid trihydrate CH(SO3H)3·3H2O (H3MTA·3H2O) in N-methyl-pyrrolidone (NMP) leads to the trinuclear complex {Ni3[MTA]2(NMP)8} (triclinic, P1̅, Z=1, a=946.25(3), b=1073.24(3), c=1518.27(4) pm, α=72.193(2), β=87.398(2), γ=89.389(2)°, V=1466.49(7)×106 pm3). The structural features of the methanetrisulfonate anions are tripodal as well as chelating coordination of the Ni2+ ions. The thermal analysis has shown that the compound is first losing NMP molecules and that the solvent-free methanetrisulfonate finally decomposes yielding Ni3S2.


Dediacted to: Professor Wolfgang Bensch on the occasion of his 65th birthday.


Acknowledgement

Financial support of the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

[1] M. D. Gernon, M. Wu, T. Buszta, P. Janney, Green Chem.1999, 1, 127.10.1039/a900157cSuche in Google Scholar

[2] G. B. Buckton, A. W. Hofmann, Liebigs Ann. Chem.1856, 100, 129.10.1002/jlac.18561000202Suche in Google Scholar

[3] A. Strecker, Liebigs Ann. Chem.1856, 100, 199.10.1002/jlac.18561000206Suche in Google Scholar

[4] H. Goldwhite, M. S. Gibson, C. Harris, Tetrahedron1965, 21, 2743.10.1016/S0040-4020(01)98360-7Suche in Google Scholar

[5] M. Fild, H.-P. Rieck, Chem. Ztg.1976, 100, 391.Suche in Google Scholar

[6] M. Theilkuhl, Liebigs Ann. Chem.1867, 147, 134.10.1002/jlac.18681470203Suche in Google Scholar

[7] E. H. Bagnall, J. Chem. Soc. Trans.1899, 75, 278.10.1039/CT8997500278Suche in Google Scholar

[8] H. J. Backer, Rec. Trav. Chim.1930, 49, 1107.10.1002/recl.19300491203Suche in Google Scholar

[9] R. J. Hall, R. A. Johnson, C. H. L. Kennard, J. Chem. Soc. Dalton Trans.1980, 149.10.1039/DT9800000149Suche in Google Scholar

[10] B. Oelkers, D. Schaffner, Y. Sun, ChemistrySelect2016, 1, 4440.10.1002/slct.201601200Suche in Google Scholar

[11] C. Zitzer, T. W. T. Muesmann, J. Christoffers, M. S. Wickleder, New J. Chem.2015, 39, 6117.10.1039/C5NJ00223KSuche in Google Scholar

[12] C. Zitzer, T. W. T. Muesmann, K. Hunfeld, J. Christoffers, M. S. Wickleder, Eur. J. Inorg. Chem.2015, 2015, 2159.10.1002/ejic.201403171Suche in Google Scholar

[13] C. Zitzer, T. W. T. Muesmann, J. Christoffers, M. S. Wickleder, Chem. Asian J.2015, 10, 1354.10.1002/asia.201403392Suche in Google Scholar PubMed

[14] F. Behler, M. S. Wickleder, J. Christoffers, ARKIVOC2015, (ii), 64.10.3998/ark.5550190.p008.911Suche in Google Scholar

[15] Behler, C. Zitzer, M. S. Wickleder, J. Christoffers, Eur. J. Inorg. Chem.2014, 36, 6225.10.1002/ejic.201402925Suche in Google Scholar

[16] C. Zitzer, T. Muesmann, J. Christoffers, C. Schwickert, R. Pöttgen, M. S. Wickleder, CrystEngComm2014, 16, 11064.10.1039/C4CE01618ASuche in Google Scholar

[17] C. Zitzer, T. W. T. Muesmann, J. Christoffers, M. S. Wickleder, Z. Kristallogr.2014, 229, 103.Suche in Google Scholar

[18] T. W. T. Muesmann, M. S. Wickleder, C. Zitzer, J. Christoffers, Synlett2013, 24, 959.10.1055/s-0032-1317806Suche in Google Scholar

[19] T. W. T. Muesmann, M. S. Wickleder, J. Christoffers, Synthesis2011, 17, 2775.10.1055/s-0030-1260123Suche in Google Scholar

[20] T. W. T. Muesmann, C. Zitzer, M. S. Wickleder, J. Christoffers, Inorg. Chim. Acta2011, 369, 45.10.1016/j.ica.2010.12.026Suche in Google Scholar

[21] A. Mietrach, T. W. T. Muesmann, J. Christoffers, M. S. Wickleder, Eur. J. Inorg. Chem.2009, 35, 5328.10.1002/ejic.200900914Suche in Google Scholar

[22] B. Kramer, Neue Koordinationspolymere auf Basis von Methanoligosulfonsäuren, Master Thesis, Universität Oldenburg, Oldenburg, 2013.Suche in Google Scholar

[23] M. E. Fleet, Am. Mineral.1977, 62, 341.Suche in Google Scholar

[24] P. Sartori, R. Jüschke, J. Prakt. Chem.1994, 336, 373.10.1002/prac.19943360421Suche in Google Scholar

[25] G. Sheldrick, Acta Crystallogr. 2008, A64, 112.10.1107/S0108767307043930Suche in Google Scholar PubMed

[26] Opus (version 6.5), Bruker Optik GmbH, Karlsruhe (Germany) 2009.Suche in Google Scholar

[27] Stare (version 9.3), Mettler-Toledo GmbH, Schwerzenbach (Switzerland) 2009.Suche in Google Scholar

[28] WinXPow 2007, STOE & Cie GmbH, Darmstadt (Germany) 2006.Suche in Google Scholar

Received: 2018-07-24
Accepted: 2018-10-20
Published Online: 2018-12-10
Published in Print: 2019-01-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
  5. Orthorhombic sulfur from Cap Garonne, Mine du Pradet
  6. An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
  7. ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
  8. Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
  9. Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
  10. Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
  11. Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
  12. The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
  13. Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
  14. Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
  15. CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
  16. Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
  17. Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X (X = Cl, Br, I)
  18. Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
  19. Modulated vacancy ordering in SrGe6−x (x≈0.45)
  20. Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis
Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0152/html
Button zum nach oben scrollen