Abstract
Applying a nematic liquid crystalline phase of a synthetic Na-hectorite with layer separations >100 nm, the reaction time for pillaring with Al13 Keggin oligocation could be reduced to seconds ensuring that cation exchange is controlled by thermodynamics. With this material at hand we are able to resolve the long-standing dispute regarding the charge of intercalated Keggin oligocations. Micropore sizes as determined by physisorption isotherms, adsorption isotherms obtained via elemental analysis, and results of 27Al solid-state NMR and pyridine probe IR spectroscopy favor a charge of +7 for the Al13 pillars intercalated into hectorite unaltered.
Dedicated to: Professor Wolfgang Bensch on the occasion of his 65th birthday.
Acknowledgements
We thank Beate Bojer for recording the NMR spectra and Lena Geiling for physisorption measurements. We acknowledge the financial support of this work by the Deutsche Forschungsgemeinschaft (SFB 840).
References
[1] J. Shabtai, M. Rosell, M. Tokarz, Clays Clay Miner.1984, 32, 99.10.1346/CCMN.1984.0320203Search in Google Scholar
[2] T. J. Pinnavaia, Science1983, 220, 365.10.1126/science.220.4595.365Search in Google Scholar PubMed
[3] M. L. Occelli, D. H. Finseth, J. Catal.1986, 99, 316.10.1016/0021-9517(86)90356-8Search in Google Scholar
[4] J. Barrault, M. Abdellaoui, C. Bouchoule, A. Majesté, J. Tatibouët, A. Louloudi, N. Papayannakos, N. Gangas, Appl. Catal. B Environ.2000, 27, L225.10.1016/S0926-3373(00)00170-3Search in Google Scholar
[5] J. R. Jones, J. H. Purnell, Catal. Lett.1993, 18, 137.10.1007/BF00769506Search in Google Scholar
[6] L. Bergaoui, J.-F. Lambert, R. Franck, H. Suquet, J.-L. Robert, J. Chem. Soc., Faraday Trans.1995, 91, 2229.10.1039/FT9959102229Search in Google Scholar
[7] M. Caine, G. Dyer, J. V. Holder, B. N. Osborne, W. A. Matear, R. W. McCabe, D. Mobbs, S. Richardson, L. Wang, in Natural Microporous Materials in Environmental Technology, Springer, Dordrecht, 1999, p. 49.10.1007/978-94-011-4499-5_4Search in Google Scholar
[8] S. Moreno, R. Sun Kou, G. Poncelet, J. Phys. Chem. B1997, 101, 1569.10.1021/jp961564lSearch in Google Scholar
[9] G. Johansson, Acta Chem. Scand. 1960, 14, 771.10.3891/acta.chem.scand.14-0771Search in Google Scholar
[10] H. Kalo, W. Milius, J. Breu, RSC Adv.2012, 2, 8452.10.1039/c2ra20457fSearch in Google Scholar
[11] L. J. Michotf, T. J. Pinnavaia, Chem. Mater.1992, 4, 1433.10.1021/cm00024a054Search in Google Scholar
[12] C. Breen, J. Madejová, P. Komadel, J. Mater. Chem.1995, 5, 469.10.1039/JM9950500469Search in Google Scholar
[13] J. Y. Bottero, M. Axelos, D. Tchoubar, J. M. Cases, J. J. Fripiat, F. Fiessinger, J. Colloid Interface Sci.1987, 117, 47.10.1016/0021-9797(87)90166-4Search in Google Scholar
[14] M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, J. Breu, Langmuir2013, 29, 1280.10.1021/la304453hSearch in Google Scholar PubMed
[15] M. M. Herling, M. Rieß, H. Sato, L. Li, T. Martin, H. Kalo, R. Matsuda, S. Kitagawa, J. Breu, Angew. Chem. Int. Ed.2018, 130, 573.10.1002/ange.201710717Search in Google Scholar
[16] K. Bärwinkel, M. M. Herling, M. Rieß, H. Sato, L. Li, Y. S. Avadhut, T. W. Kemnitzer, H. Kalo, J. Senker, R. Matsuda, S. Kitagawa, J. Breu, J. Am. Chem. Soc.2017, 139, 904.10.1021/jacs.6b11124Search in Google Scholar PubMed
[17] M. M. Herling, U. Lacher, M. Rieß, S. Seibt, M. Schwedes, H. Kalo, R. Schobert, J. Breu, Chem. Commun.2017, 53, 1072.10.1039/C6CC09484HSearch in Google Scholar PubMed
[18] M. Daab, N. J. Eichstaedt, C. Habel, S. Rosenfeldt, H. Kalo, H. Schießling, S. Förster, J. Breu, Langmuir2018, 34, 8215.10.1021/acs.langmuir.8b00492Search in Google Scholar PubMed
[19] S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, J. Breu, Langmuir2016, 32, 10582.10.1021/acs.langmuir.6b02206Search in Google Scholar PubMed
[20] T. J. Pinnavaia, M.-S. Tzou, S. D. Landau, R. H. Raythatha, J. Mol. Catal.1984, 27, 195.10.1016/0304-5102(84)85080-4Search in Google Scholar
[21] M. Wang, J. Wang, Y. Hou, D. Shi, D. Wexler, S. D. Poynton, R. C. T. Slade, W. Zhang, H. Liu, J. Chen, ACS Appl. Mater. Interfaces2015, 7, 7066.10.1021/acsami.5b01025Search in Google Scholar
[22] Y. Zhou, X.-C. Hu, Q. Fan, H.-R. Wen, J. Mater. Chem. A2016, 4, 4587.10.1039/C5TA09956KSearch in Google Scholar
[23] J. M. Lehn, A. R. Fersht, T. Loiseau, G. Ferey, F. Taulelle, Angew. Chem. Int. Ed.2000, 39, 511.10.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-NSearch in Google Scholar
[24] J. Breu, W. Seidl, A. Stoll, Z. Anorg. Allg. Chem.2003, 629, 503.10.1002/zaac.200390083Search in Google Scholar
[25] S. A. Bagshaw, R. P. Cooney, Chem. Mater.1993, 5, 1101.10.1021/cm00032a013Search in Google Scholar
[26] B. Chakraborty, B. Viswanathan, Catal. Today1999, 49, 253.10.1016/S0920-5861(98)00431-3Search in Google Scholar
[27] J. W. Akitt, A. Farthing, J. Chem. Soc., Dalton Trans.1981, 1617.10.1039/dt9810001617Search in Google Scholar
[28] B. M. Fung, A. K. Khitrin, K. Ermolaev, J. Magn. Reson.2000, 142, 97.10.1006/jmre.1999.1896Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0172).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
- Orthorhombic sulfur from Cap Garonne, Mine du Pradet
- An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
- ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
- Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
- Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
- Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
- Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
- The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
- Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
- Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
- CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
- Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
- Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X− (X = Cl, Br, I)
- Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
- Modulated vacancy ordering in SrGe6−x (x≈0.45)
- Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
- Orthorhombic sulfur from Cap Garonne, Mine du Pradet
- An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
- ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
- Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
- Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
- Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
- Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
- The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
- Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
- Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
- CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
- Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
- Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X− (X = Cl, Br, I)
- Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
- Modulated vacancy ordering in SrGe6−x (x≈0.45)
- Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis